Antibody single-state design

Bold text means that these files and/or this information is provided.

Ttalicized text means that this material will NOT be conducted during the workshop
fixed width text means you should type the command into your terminal

If you want to try making files that already exist (e.g., input files), write them to a different directory! (mkdir
my_ dir)

Tutorial

This tutorial is an example of an antibody single-state design experiment. The goal of this experiment is to
take a previously crystallized antibody-antigen complex and optimize the antibody sequence for increased
affinity for its target. Antibody single-state design is also referred to as affinity maturation, sequence
optimization, or simply design throughout the protocol - these terms can be used interchangeably. However, it
should be noted that this is a separate protocol than de novo antibody design, which is described in a separate
tutorial. The difference between these protocols is that this protocol optimizes an existing antibody-antigen
complex, whereas de novo antibody design creates a new antibody from scratch for a target antigen. If
successful, this protocol will result in an optimized antibody sequence with increased affinity for its target
antigen.

In this tutorial we are going to use the co-crystal structure of anti-influenza antibody CH67 against influenza
hemagglutinin (HA) H1 SolomonIslands/03/2006.

1. Create a directory in the single state_design directory called my_ files and switch to that directory.

Although many files you need for the tutorial are located in the input_ files directory, we will work from
my_ files for the rest of the tutorial.

mkdir my_files
cd my_files

2. Prepare the input complex for design.

1. Download the co-complex from the Protein Databank (PDB). This complex is under the PDB
ID 4hkx. The 4HKX.pdb file is provided in the input_ files directory. However the
instructions for downloading this PDB file are also provided below.

1. Go to rcsh.org and type ‘4hkx’ in the search bar.
2. Click on ‘Download Files’ on the right side of the page, then ‘PDB Format’.
3. Save the PDB file in the my_ files directory as ‘4HKX.pdb’

2. Prepare the PDBs for running through Rosetta. In general before running a PDB through Rosetta
you should remove water molecules and all ligands that are non-essential to your protocol. We will
use an automated script to do this processing.

1. We want to pull hemagglutinin (chain E) and the antibody chains (chain A+B) from the PDB
4HKX.
python2.7 ~/rosetta_workshop/rosetta/tools/protein_tools/scripts/clean_pdb.py

2. As an extra processing step we will remove any protein atoms that are not involved in the
antibody-antigen interface. This will make the protocol run faster without any negative impact
on the results. In this case we will delete the constant domain of the antibody on both the

heavy and light chains. We will manually edit the PDB file in PyMOL to remove these atoms.

Enter the following commands in the PyMOL command prompt.

4HKX ABE

pymol 4HKX_ABE.pdb
as cartoon

select heavy_constant, resi 339-438 and chain A
select light_constant, resi 537-639 and chain B

Look at the 4HKX complex in PyMOL and notice the heavy and light chain constant domains
that were selected with the previous command. Notice how these domains are very far from
the antibody-antigen interface. These can be removed to make the design protocol run more
quickly.

remove heavy_constant

remove light_constant

save 4HKX_trim.pdb, 4HKX_ABE

3. Next we will rename and reorder the chains in this complex. As a general convention it’s
good to name antibody chains H and L (heavy and light) and antigen chain A. This script
will reorder the chains in our PDB, rename them to H,LL,A, and renumber them starting from
residue number 1.

python2.7 ../../scripts/reorder_pdb_chains.py --new_chain_order A,B,E \
--new_chain_ids H,L,A --norestart 4HKX_trim.pdb 4HKX_renum.pdb

3. Prepare a residue file (resfile) for design.

When designing a protein we need some way to tell Rosetta which residues should be designed,
which should be repacked with no design, and which should be ignored. The residue file, known
as a resfile, serves this purpose. Full documentation of the resfile format can be found at https:
//www.rosettacommons.org/docs/latest /rosetta_ basics/file_types/resfiles.

In this tutorial, we will use script define_interface.py to define which residues are at the antibody-antigen
interface. Interface residues on the antibody will be redesigned, and those on the antigen side will be
repacked. This algorithm defines interface residues as those with a heavy atom within 5 A of a heavy
atom on a residue on the opposing side of the interface.

1. Run define_interface.py to generate a resfile with designable and repackable residues.

python2.7 ../../scripts/define_interface.py --sidel HL --side2 A --design-side 1 \
--repack --output 4HKX 4HKX_renum.pdb

4. Repack or relax the template structure.

Rosetta protocols often work better on a structure that has been processed in some way after downloading
from the PDB. Protein structures frequently have small clashes between side chains that are easily
resolved by letting Rosetta optimize side chain conformations (known as repacking) or minimizing
backbone phi-psi angles to relieve such clashes (known as relaxing). These problems are exaggerated
when working with a low-resolution structure, when all side chain atoms may not be easy to place from
the electron density.

In this tutorial we will relax our input complex while restraining the atoms to their starting
positions. This allows Rosetta to relieve clashes while preventing the structure from moving too far
from what was experimentally determined. More information on the relax protocol is available at
https://www.rosettacommons.org/docs/latest /application_ documentation/structure_ prediction/relax.
The relax options file and relax command file are provided in the input_ files directory.

1. Copy the options file and command line for running relax from the input_ files directory.

cp ../input_files/relax.options .
cp ../input_files/relax.command .

2. Run relax with constraints on the 4hkx complex.

https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/resfiles
https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/resfiles

~/rosetta_workshop/rosetta/main/source/bin/relax.default.linuxgccrelease \
Orelax.options -s 4HKX_renum.pdb > relax.out &

3. The relaxed model will take some time to run (~90 min) - you can move on to the next step using
pre-generated models. Copy the best scoring model to 4HKX_relax.pdb. In this case we only
make a single model, but in general it’s recommended to make a larger number of models (~10-
50). In this case there are pre-generated relaxed models located in the output__ files
directory.

The lowest energy relaxed structure is 4AHKX renum_ 0009.pdb. Copy this model to your current
directory.

cp ../output_files/4HKX_renum_0009.pdb 4HKX_relax.pdb

. Design the antibody in our relaxed structure.

At this point all of our input files are ready and we can run design. We will run design through a
RosettaScripts XML file - this allows more flexibility in creating a design protocol. In this tutorial the
design protocol will use a single round of fixed backbone design.

Generally in protein design it is useful to use iterations of design and backbone motion. An example
XML of design iterated with backrub motions is provided in the input_files directory, but will not be
used in this tutorial. Backrub motions are small rotations of the backbone designed to mimic protein
flexibility in solution. Small perturbations of the antibody backbone can provide more backbone
diversity among our models to improve sequence diversity. Backrub motion in design is recommended
for production runs.

1. Copy design.xml and design.options from the input_ files directory.

cp ../input_files/design.xml .
cp ../input_files/design.options .
cp ../input_files/design.command .

2. Read through the XML and options files, and familiarize yourself with what different steps of the
protocol are doing.

3. Generate ten designed models. These models will finish shortly (~1 minute per design).

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \

@design.options -parser:protocol design.xml -out:suffix _design \
-scorefile design.fasc

4. As a control we will repeat the same protocol without designing any residues. This is necessary
because in our analysis we will want to compare the score and binding energy of designed models to
the native sequence, and this comparison is only valid if our native sequence models are subjected
to the same level of optimization as the designed models. Copy the XML, resfile and command
line for the design control to the current directory. The XML protocol is identical except for which
resfile is being used. 4HKX_ control.resfile is the same as the previously used resfile, except the
designed residues are changed from ALLAA (design) to NATAA (repack).

cp ../input_files/4HKX_control.resfile .
cp ../input_files/design_control.xml .
cp ../input_files/design_control.command .

5. Generate ten control models.

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \

@design.options -parser:protocol design_control.xml -out:suffix _control \
-scorefile control.fasc

6. While you are waiting for design and control models to finish you can move on to
the next step with the pre-generated results in the output_ files directory. Make a
new directory and copy the files design.fasc and control.fasc from the output_ files
directory into this new directory.

6. Analyze the designed sequences.

To analyze the designed sequences it is useful to look at the score, binding energy, and binding density
of the models. In a successful design run these metrics should be significantly lower for the designed
models than the control models. We will pull these values from the score file and plot them side by side.

1. Plot the score and binding energy of designed models against control models. The script com-
pare__design_ to_control.py will take in the score files of both your design and control models and
will make a plot of score and binding energy.

python2.7 ../../scripts/compare_design_to_control.py control.fasc design.fasc

gthumb *png &

2. In this case the designs have improved stability and binding affinity compared to our native
sequence. The next step is to look at what mutations specifically were made that result in this
improvement. We will make a sequence logo from our models that shows which mutations were
made and how frequent they were. Use the design_ analysis.py script to make a sequence logo
from our designed models.

python2.7 ../../scripts/design_analysis.py --prefix design --res 4HKX.resfile \
--native 4HKX_relax.pdb *design*pdb

gthumb design_seq_log.png &

3. Open the lowest scoring control and design models in PyMOL and look at the amino acids
introduced by design and how they interact with the antigen.

sort -nk2 design.fasc | head -1
sort -nk2 control.fasc | head -1
pymol 4HKX_relax_control_0001.pdb 4HKX_relax_design_0001.pdb

Antibody multistate design

Bold text means that these files and/or this information is provided.

Ttalicized text means that this material will NOT be conducted during the workshop
fixed width text means you should type the command into your terminal

If you want to try making files that already exist (e.g., input files), write them to a different directory! (mkdir
my_ dir)

Tutorial

This tutorial is an example of an antibody multistate design experiment. This builds off of the previous
tutorial, antibody single-state design. In that tutorial we designed an antibody (CH67) against a single
antigen (influenza hemagglutinin H1 SolomonIslands/03/2006). This type of design is known as single-state
design, since we were designing a single antibody-antigen complex. This tutorial will explore multistate
design, where we are designing multiple complexes (also known as states) simultaneously. We will design
CHG67 to retain binding for H1 SolomonIslands/03/2006 while also designing it to bind the pandemic strain
H1 California/07/2009, which is not bound by CH67. In this case we will design two states - CH67 complexed
with H1 SolomonlIslands/03/2006, and CH67 complexed with to H1 California/07/2009.

1. Create a directory in the multistate_design directory called my_ files and switch to that directory.
Although many files you need for the tutorial are located in the input_ files directory, we will work from
my_ files for the rest of the tutorial.

mkdir my_files
cd my_files

2. Prepare the input complexes for design.

1. Download the co-complex from the Protein Databank (PDB). We will copy the 4HKX complex
from the previous tutorial.

cp ../input_files/4HKX_renum.pdb .

We also need to download the structure of the H1 California/07/2009, PDB ID 3ubq. The
3UBQ.pdb file is provided in the input_ files directory. However the instructions for
downloading this PDB file are also provided below.

1. Go to resb.org and type ‘3ubq’ in the search bar.
2. Click on ‘Download Files’ on the right side of the page, then ‘PDB Format’.
3. Save the PDB file in the my_ files directory as ‘3UBQ.pdb’.

2. Prepare the PDBs for running through Rosetta. In general before running a PDB through Rosetta
you should remove water molecules and all ligands that are non-essential to your protocol. We will
use an automated script to do this processing.

1. We want to pull the HA1 domain of hemagglutinin (chain A) from the PDB 3UBQ.
python2.7 ~/rosetta_workshop/rosetta/tools/protein_tools/scripts/clean_pdb.py 3UBQ A

2. The HA structure of H1 SolomonlIslands/03/2006 in the 4HKX complex is truncated to the
globular head domain of HA. Since the structure in H1 California/07/2009 includes the full
HA we will truncate it to match the 4HKX complex. Also, because the H1 California/07/2009
strain is not bound by CH67 we have to create a mock complex based on the 4HKX structure.
We will manually align these PDB files in PyMOL to create a model of CH67 bound to H1
California/07/2009. Enter the following commands in the PyMOL command prompt to align
the two structures, truncate the H1 California/07/2009 antigen and create a mock complex
with CH67.

pymol 3UBQ_A.pdb 4HKX_renum.pdb

Click the ‘S’ button on the bottom left to show the sequences.
Align 3UBQ to the HA chain in 4HKX. Click the ‘A’ button next to 4HKX_renum on the right
side of the screen, click ‘align’, ‘to molecule’, ‘3UBQ__A".

From the sequence alignment we can determine where the sequence should be truncated. Enter
the following command to remove these leading and trailing amino acids.

select truncation, 3UBQ_A and (resi 1-47 or resi 261-323)
remove truncation

Save the HA from the 3UBQ structure with the antibody from 4HKX - this will make up our
mock complex that we will later design.

save 3UBQ_Ab.pdb, 3UBQ_A or (4HKX_renum and chain H+L)

1. Rename and reorder the chains in the CH67-3UBQ complex to the same convention as in the
CH67-4HKX complex.

python2.7 ../../scripts/reorder_pdb_chains.py --new_chain_order H,L,A \
--new_chain_ids H,L,A --norestart 3UBQ_Ab.pdb 3UBQ_Ab_renum.pdb

3. Prepare a residue file (resfile) for multistate design.

Resfiles in multistate design function exactly as in single-state design. The resfile format is described in
more detail in the single-state design tutorial. The main difference is that you should create a resfile for
each state, since each state can designate different residues for repacking.

In this tutorial, we will use script define__interface.py to define which residues are at the antibody-antigen
interface. Interface residues on the antibody will be redesigned, and those on the antigen side will be
repacked. This algorithm defines interface residues as those with a heavy atom within 5 A of a heavy
atom on a residue on the opposing side of the interface.

Note: the number of designed residues must be the same for each state. This is very
important, and multistate design will not run if a different number of designed residues
are specified. For this reason, after we create the resfiles for 4HKX and 3UBQ, we have to manually
edit the resfiles to remove designed residues that are present in one resfile but not the other.

1. Run define_interface.py to generate a resfile with designable and repackable residues.

python2.7 ../../scripts/define_interface.py --sidel HL --side2 A --design-side 1 \
--repack --output 4HKX 4HKX_renum.pdb

python2.7 ../../scripts/define_interface.py --sidel HL --side2 A --design-side 1 \
--repack --output 3UBQ 3UBQ_Ab_renum.pdb

2. Open the two resfiles in gedit to make sure both resfiles have the same number of designable
residues.

gedit 4HKX.resfile 3UBQ.resfile &

Notice that residues 30, 32, 50, 54, 57, 59, 102, 103, 108, 110, 111, 207, and 210 are designed in one
resfile and not the other. Delete these residues and save the two resfiles.

4. Repack or relax the template structure.

We use the same strategy for relaxation of our input structure with constraints from the previous
tutorial - however now we only need to relax the 3UBQ complex.

1. Copy the relaxed 4HKX structure from the single state design tutorial.
cp ../input_files/4HKX_relax.pdb .
2. Copy the options file and command line for running relax from the input__files directory.

cp ../input_files/relax.options .
cp ../input_files/relax.command .

3. Run relax with constraints on the 3ubq complex.

~/rosetta_workshop/rosetta/main/source/bin/relax.default.linuxgccrelease \
@relax.options -s 3UBQ_Ab_renum.pdb > relax.out &

4. The relaxed model will take some time to run (~90 min) - you can move on to the next step using
pre-generated models. Copy the best scoring model to 3UBQ_ relax.pdb. In this case we only
make a single model, but in general it’s recommended to make a larger number of models (~10-
50). In this case there are pre-generated relaxed models located in the output__files
directory. The lowest energy model is 3SUBQ__Ab_ renum__0004.pdb. Copy this file to the current
directory.

cp ../output_files/3UBQ_Ab_renum_0004.pdb 3UBQ_relax.pdb

5. Run multistate design on our antibody complexed with both antigens.

At this point all of our input files are ready and we can run multistate design. The multistate
design protocol involves four rounds of sequence design with constraints applied to encourage sequence
convergence between all of the states. Between these design steps we will include backbone flexibility
via backrub motions. At the end of the protocol there is a step in which we select the best sequence
from all of our states, and use this as the final sequence.

1. Copy multistate_ design.xml and multistate_ design.options from the input_ files directory.

cp ../input_files/multistate_design.xml .
cp ../input_files/multistate_design.options .
cp ../input_files/multistate_design.command .

2. Read through the XML and options files, and familiarize yourself with what different steps of the
protocol are doing.

3. Generate ten designed models. These models will take some time (~5 minute per design).

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \
@multistate_design.options -parser:protocol multistate_design.xml \
-out:suffix _multistate_design -scorefile multistate_design.fasc

4. As a control we will repeat the same protocol without designing any residues. We will run this
control design for both 4HKX and 3UBQ complexes separately. Copy the same control files from
the input_ files directory and use these to run a control experiment for the 3UBQ complex.

cp ../input_files/design.options .

cp ../input_files/3UBQ_control.resfile .

cp ../input_files/4HKX_control.resfile .

cp ../input_files/3UBQ_design_control.xml .
cp ../input_files/4HKX_design_control.xml .
cp ../input_files/design_control.command .

5. Generate ten control models for the 3UBQ complex.

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \
Q@design.options -parser:protocol 3UBQ_design_control.xml -out:suffix _control \
-scorefile 3UBQ_control.fasc -s 3UBQ_relax.pdb

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \
@design.options -parser:protocol 4HKX_design_control.xml -out:suffix _control \
-scorefile 4HKX_control.fasc -s 4HKX_relax.pdb

6. The design and control models will take some time to finish. While you are wait-
ing you can move on to the next step with the pre-generated results in the out-
put__files directory. Make a new directory and copy the files multistate_ design.fasc,
3UBQ_ control.fasc, and 4HKX__ control.fasc from the output_ files directory into
this new directory.

6. Analyze the designed sequences.

Analysis of multistate design results is slightly more complicated than the analysis of single-state designs.
The output of design is a set of fifty pairs of models, one of CH67 in complex with the antigen 4HKX
and the other in complex with the antigen 3UBQ. Each pair of models will have an identical sequence
in the designed residues. For example, the outputs 4HKX relax_ multistate_design_ 0001.pdb and
3UBQ_ relax_ multistate_ design_ 0001.pdb will have the same CDR sequences in complex with the two
different antigens. To analyze these results we will look at the difference in score, binding energy, and
binding density for the designed sequences in both the 3UBQ and 4HKX complexes.

1. Plot the score and binding energy of designed models against control models. The script com-
pare_ design_ to_ control_multistate.py plots the same metrics as the script used in the single-state
design tutorial, but will split the results to show the effect of mutations on both the 3UBQ and
4HKX complexes.

python2.7 ../../scripts/compare_design_to_control_multistate.py 3UBQ \
3UBQ_control.fasc multistate_design.fasc

python2.7 ../../scripts/compare_design_to_control_multistate.py 4HKX \
4HKX_control.fasc multistate_design.fasc

gthumb *png &

2. Use the design_ analysis.py script to look at what mutations specifically were made in the design
process. Make a sequence logo from our designed models to illustrate these changes. Since each
multistate design run outputs a pair of complex (3UBQ and 4HKX) with an identical sequence,
we only need to analyze one complex of the two to see all the mutations that were made.

python2.7 ../../scripts/design_analysis.py --prefix multistate_design \
--res 4HKX.resfile --native 4HKX_relax.pdb 4HKX*design*pdb
gthumb multistate_design_seq_log.png &

3. In this case Rosetta was able to introduce mutations that result in an antibody with a lower (more
favorable) score bound to both antigens. However the binding energy and binding density seem to
close to or slightly worse than the values from the native complex. Frequently in multistate design
antibody mutations will establish stronger intramolecular contacts, since these contacts are uniform
across all states, at the expense of cross-interface contacts, which can vary between target states.
Open up the lowest scoring models in PyMOL and analyze what impact the Rosetta-introduced
mutations have on interactions with both targets.

	Antibody single-state design
	Tutorial
	Antibody multistate design
	Tutorial

