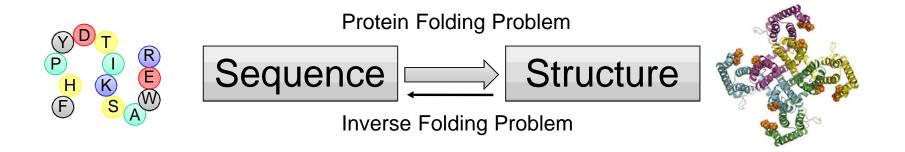
Antibody Design

Samuel Schmitz Rosetta Workshop April 26, 2017

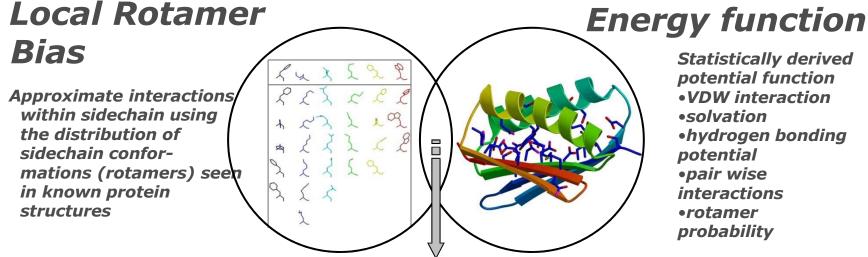
Samuel.Schmitz@vanderbilt.edu

Overview

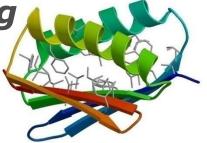
Introduction to Protein Design How it works: The Packer Resfiles


Overview of the Tutorial: Input files Protocol Analysis

Rosetta Design Applications: Novel Folds Protein-Ligand interactions



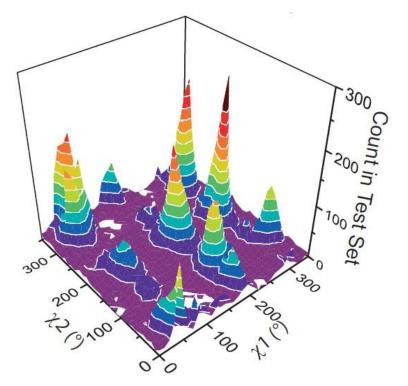
Protein Design is the Inverse Protein Folding Problem

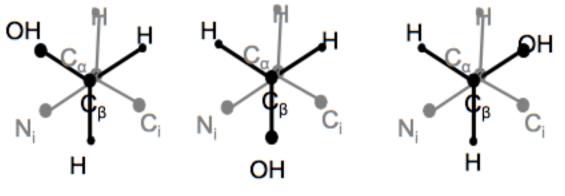

Given a protein fold – which primary sequence(s) can fold into it?

Protein Design Uses the Rosetta Energy Function and Local Rotamer Libraries

Statistically derived potential function •VDW interaction solvation hydrogen bonding potential •pair wise interactions

Simulated Annealing Monte Carlo optimization




©.Jens Meiler

How Rosetta Design works...

Side chain rotamer optimization

- Rotamer = rotational isomer
- Sampling all chi angles is computationally expensive
- Rotamers fall into discrete bins – can simplify this with a rotamer library

Adapted from J. Meiler

"The Packer"

In general, the purpose is to optimize rotamers on a fixed backbone.

Native (repack) All Amino Acids (design) Specified Amino Acids (guided design)

Steps of the packer:

- 1. Detect neighbors
- 2. Build rotamers
- 3. Calculate energies
- 4. Simulated annealing/MC Accept

Slide adapted from A. Leaver-Fay

The Packer-What it's Actually Doing

- 1. Random rotamer substitution
 - Set of rotamers to be considered are specified
- 2. Evaluate energy
- 3. Accept/Reject
 - Monte Carlo criterion
 - Simulated annealing from high to low temperature
- 4. Return best energy

How to Control the Packer...

The Residue File Guides Design

ALLAA #allow all 20 amino ALLAAwc #allow all 20 amino(default) ALLAAxc #allow all amino acids except cysteine POLAR #allow only canonical polar amino acids APOLAR #allow only canonical non-polar amino acids NOTAA #disallow only the specified amino acids PIKAA #allow only the specified amino acids NATAA #allow only the native amino acid (repack) NATRO #preserve input rotamer EMPTY #disallow all canonical amino acids NC <ResidueTypeName> #allow the specific non canonical residue

You can also combine commands (see tutorial).

25 A POLAR NOTAA K

When on separate lines (say at first a range, then at specific residues):

5-20 A ALLAA 15 A PIKAA Y

Residue 15 on chain A will only sample Y, whereas 5-14 and 16-20 will sample all

https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/resfiles

Basic Format of Residue Files

<Header> #instructions for all positions not specified in body #The header can also use commands such as EX 1, EX 2, and USE_INPUT_SC to apply to all positions not specified below START #keyword <Body> #instructions for specific chains and identifiers <PDBNUM> <CHAIN> <COMMANDS> #Basic format for lines in body * <CHAIN> <COMMANDS> #used to specify a command for an entire chain

For example, a resfile that does nothing:

NATRO #keeps all input rotamers (and hence identity) START

Residue File Example

Resfile that designs everything:

ALLAA START

Resfile that only repacks chain H:

NATRO

START

* H NATAA

Resfile that does nothing:

NATRO #keeps all input rotamers (and hence identity) START

What will the Packer do?

NATRO

START

* A NATAA

What will the Packer do?

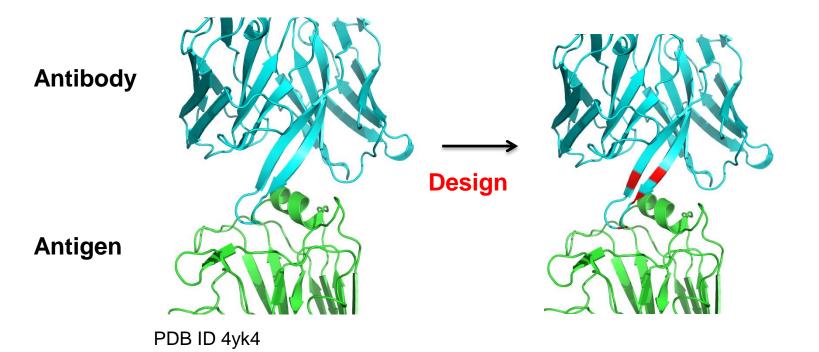
NATRO START 30 A PIKAA FY 20-35 A ALLAAxc

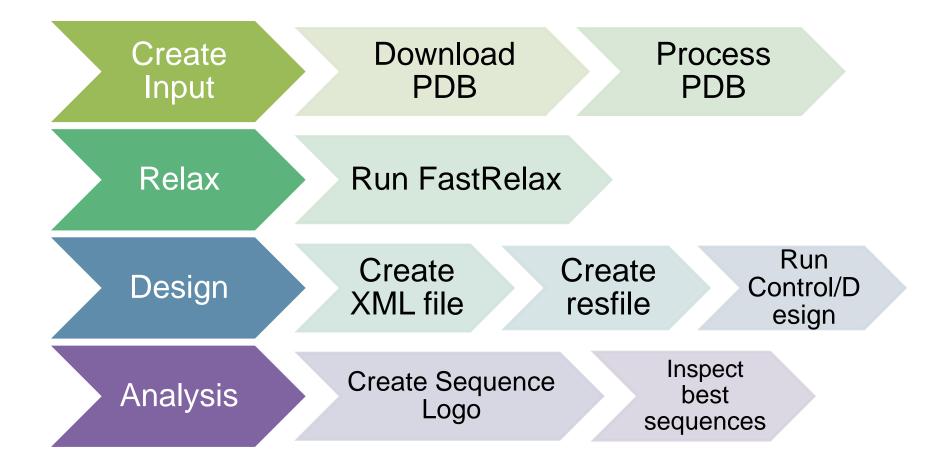
Tutorial Overview – Antibody design in Rosetta

Tutorial Overview – Antibody design in Rosetta

1.Antibody single-state design

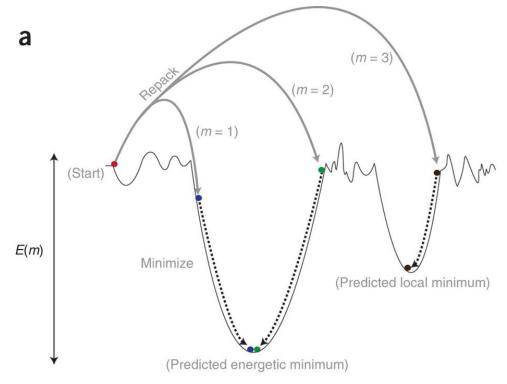
2. Antibody multistate design




Antibody single-state design

Also known as redesign, computational affinity maturation

Goal: take an existing antibody-antigen complex and optimize the antibody sequence for tighter binding


Single-state design protocol overview

FastRelax

FastRelax is designed to optimize the protein backbone/side chains to model at an energy minimum

Helps relieve clashes that may introduce artifacts into design

FastRelax

input_files/relax.command:

```
~/rosetta_workshop/rosetta/main/source/bin/relax.def
ault.linuxgccrelease @relax.options -s
4HKX_renum.pdb
```

input_files/relax.options:

Single state design

Please open input_files/design.xml

Where should you start looking?

<PROTOCOLS>
 Run the design protocol
 <Add mover=design />
 Calculate interface metrics for the final sequence
 <Add mover=analyze />
</PROTOCOLS>

Design movers

Design mover:

<PackRotamersMover name=design scorefxn=talaris2014 task_operations=ifcl,rrf />

Task Operations:

Include rotamer options from the command line
<InitializeFromCommandline name=ifcl />
Design and repack residues based on resfile
<ReadResfile name=rrf filename=4HKX.resfile/>

Design control

Important to see how much improvement designs have over a nondesigned model

Please open input_files/design_control.xml

Design mover:

<PackRotamersMover name=design scorefxn=talaris2013 task_operations=ifcl,rrf />

Task Operations:

Include rotamer options from the command line
<InitializeFromCommandline name=ifcl />
Design and repack residues based on resfile
<ReadResfile name=rrf filename=4HKX_control.resfile/>

Making resfiles

Use the python script located in scripts/define_interface.py

Calculates residues on each side of the interface using a side chain cutoff (default 5 A)

If any atom on a residue is within 5 A of any atom on a residue on the opposing chain – it's considered to be an interface residue

Making resfiles

--side1=SIDE1

the chains that make up one side of
the interface (as a string, e.g. 'AB')

--side2=SIDE2 # the chains that make up the other side of

the interface (as a string, e.g. 'CD')

--nearby atom cutoff=NEARBY ATOM CUTOFF

SC distance cutoff to define a residue as part of the

- # interface. If any SC atom from a residue on one side is
- # within this cutoff of a residue on the other side it's
- # considered to be in the interface. Default=5.0

--output=OUTPUT # Output name for resfile --design-side=DESIGN SIDE

Side of interface to design - either 1 or 2. Defaults to 1.

--native # Just repack the residues on the side flagged "design side"

--repack # Repack side of the interface not being designed

Analysis metrics

Total score: score of the entire complex

Interface score: score of residues that are at the interface

Binding energy (ddG, dG_separated): difference in energy between the bound and unbound partners

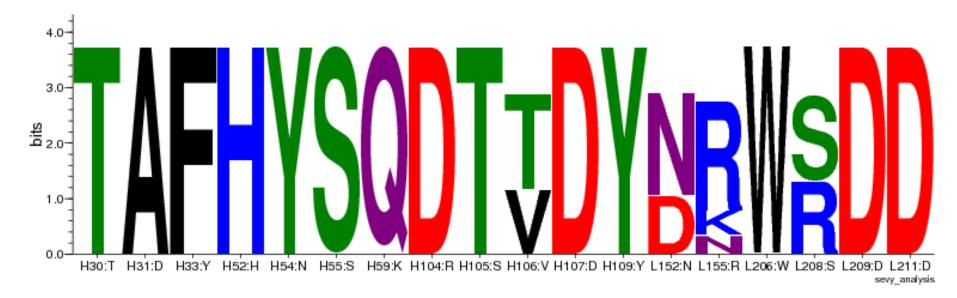
Binding density (dG_separated/dSASAx100): ddG divided by the buried surface area. Prevents a low binding energy by increasing buried surface area.

Analysis movers

<InterfaceAnalyzerMover name=analyze scorefxn=talaris2014
packstat=0 pack_input=0 pack_separated=1 fixedchains=H,L />

packstat: activates packstat calculation; can be slow so it defaults to off

fixedchains: comma-delimited list of chain ids to define a group in the interface.

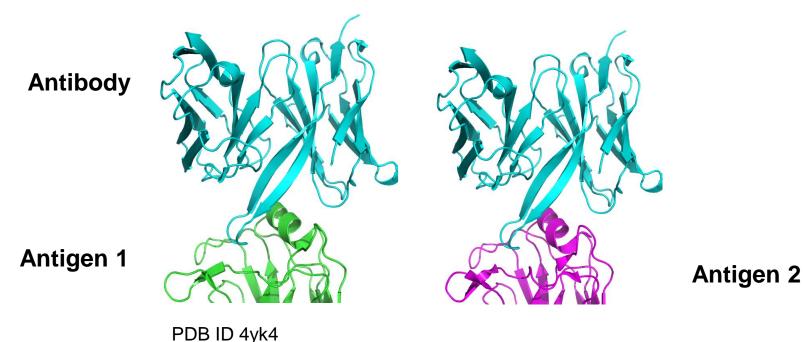

pack_separated: repack the exposed interfaces when calculating binding energy? Usually a good idea.

pack_input: prepack before separating chains when calculating binding energy? Useful if these are non-Rosetta inputs

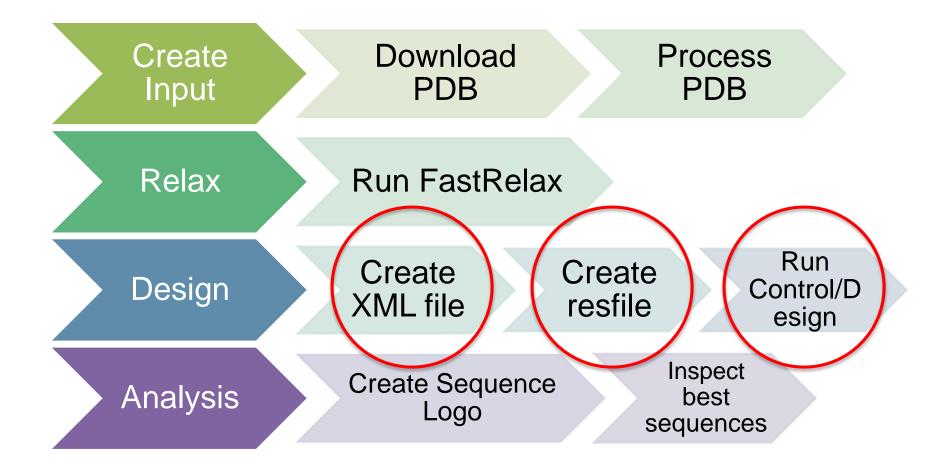
Sequence logo

Useful to quickly see which residues are being designed, and what amino acids are being put there

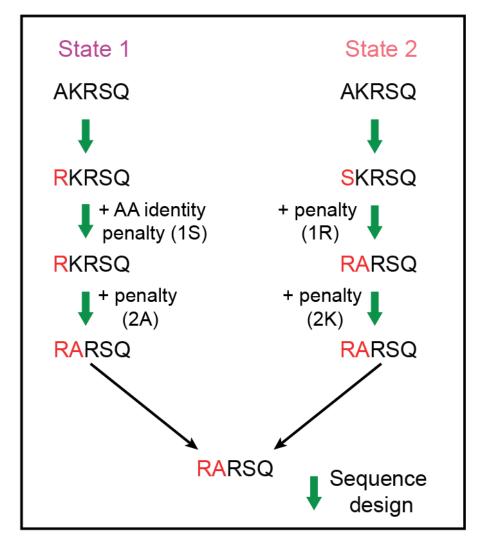
Made by WebLogo application through design_analysis.py



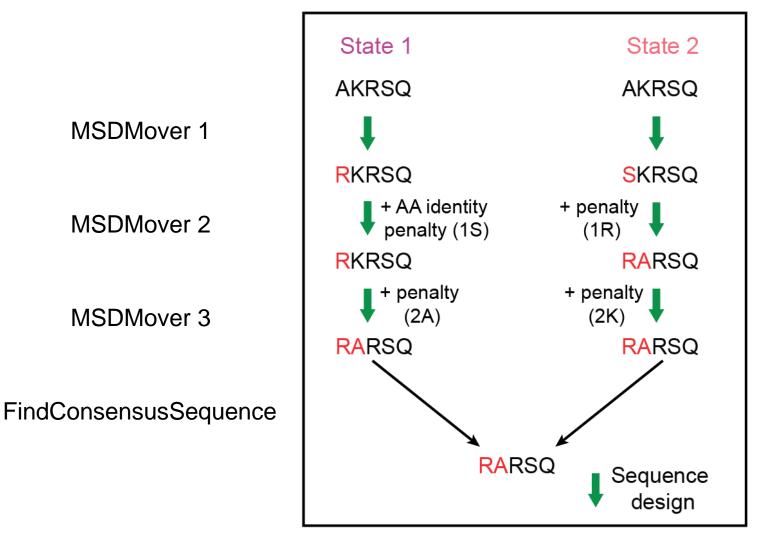
http://weblogo.berkeley.edu/


Antibody multistate design

Multistate design: optimize a sequence for low energy in multiple conformations (states)


Redesign an antibody to recognize multiple targets

Multistate design protocol overview



REstrained CONvergence in MSD (RECON)

Sevy, A. M., Jacobs, T. M., Crowe, J. E. & Meiler, J. *PLoS Comput. Biol.* **11**, e1004300 (2015).

REstrained CONvergence in MSD (RECON)

Sevy, A. M., Jacobs, T. M., Crowe, J. E. & Meiler, J. *PLoS Comput. Biol.* **11**, e1004300 (2015).

Multistate design protocol

<PROTOCOLS>

Run four rounds of design

- <Add mover=msd1 />
- <Add mover=msd2 />
- <Add mover=msd3 />
- <Add mover=msd4 />

```
Find a consensus sequence for all states
<Add mover=finish />
```

```
Calculate interface metrics for the final sequence
<Add mover=analyze />
</PROTOCOLS>
```

Multistate design movers

<PackRotamersMover name=design scorefxn=talaris_cst task_operations=ifcl />

<MSDMover name=msd1 design_mover=design constraint_weight=0.5 resfiles=4HKX.resfile,3UBQ.resfile /> <MSDMover name=msd2 design_mover=design constraint_weight=1.0 resfiles=4HKX.resfile,3UBQ.resfile/> <MSDMover name=msd3 design_mover=design constraint_weight=1.5 resfiles=4HKX.resfile,3UBQ.resfile /> <MSDMover name=msd4 design_mover=design constraint weight=2.0 resfiles=4HKX.resfile,3UBQ.resfile />

<FindConsensusSequence name=finish scorefxn=talaris_cst resfiles=4HKX.resfile,3UBQ.resfile />

Multistate design movers

Have to reweight res_type_constraint term to allow for residue constraints!

If it's not turned on protocol will run but will give a warning

Multistate design tips

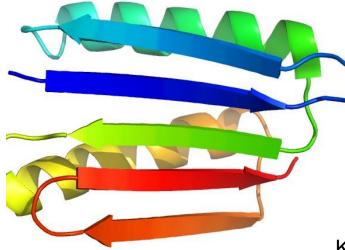
You can use multiple resfiles – lets you be more flexible in which residues are being designed/repacked

Resfiles are matched to structure by order of input – make sure these are in the same order!

multistate_design.xml:
<MSDMover name=msd1 design_mover=design
constraint weight=0.5 resfiles=4HKX.resfile,3UBQ.resfile />

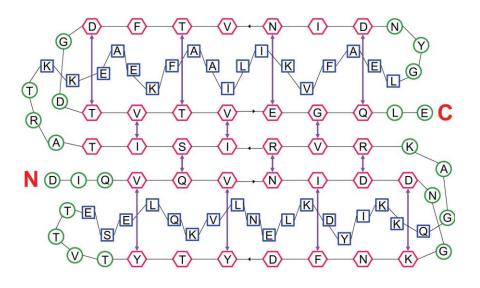
multistate_design.options:
-s 4HKX_relax.pdb 3UBQ_relax.pdb

Cysteine design is not recommended

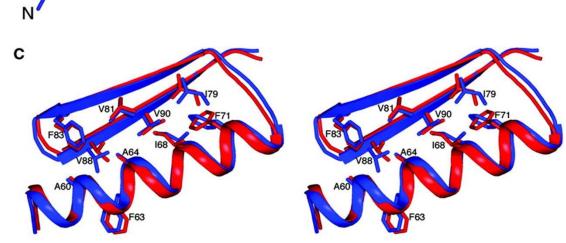

Make sure all resfiles have same number of residues being designed!

Rosetta Protein Design applications

De Novo Design of a Novel Fold


Top7 "back-of-the envelope" drawn topology not found in the PDB at time of design

Iterative fixed backbone design + backbone perturbations

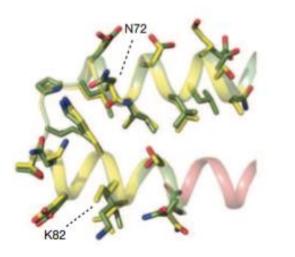

VANDERBILT WUNIVERSITY MEDICAL CENTER Kuhlman, B. *et al.* (2003). Design of a novel globular protein fold with atomic-level accuracy. Science *302*, 1364–1368.

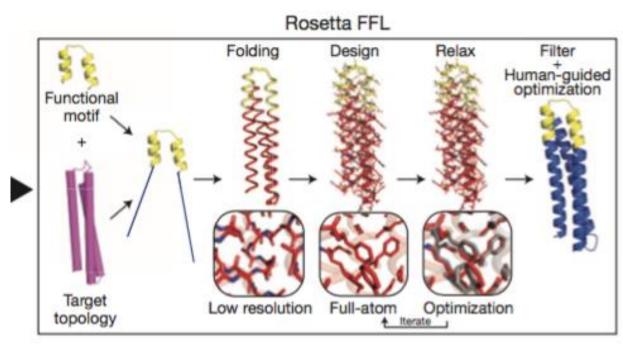
Atomic Level Accuracy of Design (blue) to X-ray structure (red)

Kuhlman, B. *et al.* (2003). Design of a novel globular protein fold with atomic-level accuracy. Science *302*, 1364–1368.

в

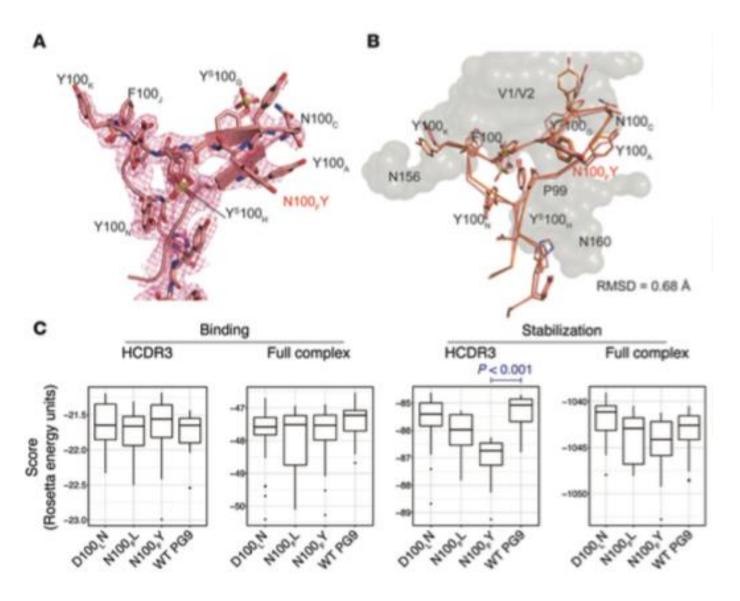
G85




Α

Design of epitope scaffolds

Extract a known neutralizing epitope from an antigen, place onto a scaffold protein


Fold a helix-loop-helix motif, redesign sequence to increase stability

Correia, B. E. *et al.* Proof of principle for epitope-focused vaccine design. *Nature* **507**, 201–206 (2015).12-216

Redesign of HIV antibody with increased potency

Willis, J. R. *et al.* Redesigned HIV antibodies exhibit enhanced neutralizing potency and breadth. *J. Clin. Invest.* **125**, 2523–2531 (2015).

Additional Design Applications

• Novel Enzyme Design – RosettaMatch and RosettaDesign

Siegel, J.B. *et al.* (2010). Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science *329*, 309–313

Novel Protein Therapeutic Design

Fleishman, S.J. *et al.* (2011). Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science *332*, 816–821.

• Design of a thermally stabilized enzyme

Korkegian, A., Black, M.E., Baker, D., and Stoddard, B.L. (2005). Computational thermostabilization of an enzyme. Science *308*, 857–860.

• Design of self-assembling proteins as nanomaterials

King, N.P., Sheffler, W., Sawaya, M.R., Vollmar, B.S., Sumida, J.P., Andre, I., Gonen, T., Yeates, T.O., Baker, D. (2012). Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. Science *336* 1171-1174

Additional Design Applications

• Design of symmetric superfolds to understand protein folding evolution

Fortenberry, C. *et al.* (2011). Exploring symmetry as an avenue to the computational design of large protein domains. J. Am. Chem. Soc. *133*, 18026–18029.

Rational epitope design

Wu, X., et al. (2010). Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science *329*, 856–861.

Rational vaccine design

Jardine, J., et al. (2013). Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science.