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Glycoproteins and glycans are important!

• Gene regulation
• Metabolism
• Cell-cell communication

Protein-carbohydrate interactions

• Antibodies engage glycans for target binding
• Carbohydrate vaccines

Antibody binding

• Glycosylation often improves solubility
• Can increase stability

Solubility/Folding

• Pathogens “hide” from the immune system 
using glycan shields

Immune evasion

http://www.writeopinions.com/n-glycosylation



Challenges in Modeling Sugars

• The nomenclature problem
• The scoring problem
• Force field parameters for sugars are not as well-developed as for proteins.
• Sugars have several “odd” electronic effects, (e.g., the anomeric effect).

• The sampling problem
• Sugars have far more degrees of freedom (DoFs) than proteins.

Slide courtesy of Jason Labonte



Carbohydrate Nomenclature

Slides from Jason Labonte: Carbohydrates 101



NOMENCLATURE/PROPERTIES

Aldose: linear form is an aldehdyde Ketose: linear form is a ketone

glucose fructose

All monosaccharides contain at least 3 carbons (trioses).

Most monosaccharides contain 6 carbons (hexoses) or fewer.



NOMENCLATURE/PROPERTIES

Acyclic Cyclic

glucose glucopyranose

Most sugars can form rings, (trioses can’t,) and most exist primarily in cyclic forms.



NOMENCLATURE/PROPERTIES

Pyranose: 6-membered ring (like pyran) Furanose: 5-membered ring (like furan)

glucopyranose fructofuranose

Pentoses and hexoses can exist as both pyranoses and furanoses.

Long sugars can also form septuloses, but these are less stable.



NOMENCLATURE/PROPERTIES

Chair (2 distinct forms) Boat (6 distinct forms)

Boats are energy maxima; however, the presence of oxygen in the ring helps reduce steric clash.

Chairs are energy minima.



NOMENCLATURE/PROPERTIES
L-Sugar: Cn-1 shares the same relative stereochemistry as 
L-glyceraldehyde

D-Sugar: Cn-1 shares the same relative stereochemistry as 
D-glyceraldehyde

L-glucopyranose D-glucopyranose

Most natural monosaccharides are D-sugars.

Note that every stereocenter has flipped.



NOMENCLATURE/PROPERTIES

α-Sugar: anomeric sidechain trans to sidechain at Cn-1 β-Sugar: anomeric sidechain cis to sidechain at Cn-1

β-D-fructofuranoseα-D-glucopyranose

The anomeric effect causes α-D-glucopyranose to be more stable than β-D-glucopyranose,
even though the anomeric hydroxyl group is axial.

Note that changing the stereochemistry of any single non-anomeric carbon yields another sugar, an epimer.



AXIAL VS EQUITORIAL GLYCAN LINKAGE



A framework to represent glycans in Rosetta

• Numerous types of Sugar 
Residues and modifications
• Typically 2-3 dihedrals between 

residues (‘backbone’)
• Structure of tree depends on C-C 

connection (1-4, 1-6, etc)
• Can be branching
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Scoring carbohydrates

• CHI (CarboHydrate Intrinsic) - energy 
function
• Derived from QM
• sugar_bb ScoreTerm

• Specific for types of Linkage

A.K. Nivedha et al. J. Comput. Chem. 2014, 35, 526-39

A.K. Nivedha et al. JCTC 2016, 12, 892-901.

α β

E F

Phi α/β linkages

Psi 1-2ax, 1-4ax and 1-3eq linkages (E) and 1-2eq, 1-4eq 
and 1-3ax linkages (F)

Omega Axial/Equitorial (statistically derived)
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Conformational Sampling: Phi/Psi 

• CHI energy function converted into phi/psi/omega probabilities  

• Implemented with new 
BB Sampling framework

A.K. Nivedha et al. J. Comput. Chem. 2014, 35, 526-39

SugarBBSampler



Conformer Sampling

• Sets all torsions of a linkage at once

• Specific for types of sugar-sugar linkage
• Sampling: Phi/psi/omega mean (+/- gaussian of SD) of glycosidic

torsions at same time

Petrescu, AJ; Petrescu, SM; Dwek, RA; & Wormald, MR. (1999), Glycobiology

Petrescu, AJ; Milac, A-L; Petrescu, SM; Dwek, RA; & Wormald, MR. (2004), Glycobiology

LinkageConformerMover



Improved sampling with much more conformers

Updated 1999/2004 data using better methodology and more structures.
• Collaborate with Maxim Shapovalov and Roland Dunbrack
• Data provided by Thomas Lutteke (glycosciences.de)

Challenge: Unknown Torsional bins for each torsion type (g+/trans/etc)

1) Generate Adaptive Kernel Densities using a 
Von Misses Kernel and lowN smoothing on 
filtered data

2) Generate cubic splines on the density

3) Calculate interdependent conformers by 
assigning bins to each torsion using 
derivatives

ASN -alpha-D-glcpNAc = 6 Possible Conformers

14,000 High-quality, filtered data points at <= 2.0Å resolution:
• 65 unique torsion types (previously 13)
• ~150 conformer (previously 27)

Conformers



Glycan Trees

pose/carbohydrates

GlycanTreeSet
GlycanTree
GlycanNode

3 new classes:

Map

1st glycan residue           GlycanTree object
256           GlycanTree object
310           GlycanTree object
493 GlycanTree object

Map

residue number          GlycanNode object
256           
257           
258

GlycanNode object
GlycanNode object
GlycanNode object

• Residue number
• Parent 
• Children
• Connection numbers to all 

children
• Nr. of torsions for a connection

GlycanTree container Node container Node

Parent Child1

Child 2

Node

pose.glycan_tree_set()

1 new member:
GlycanTreeSetOP_



Graph structure enabled easy implementation of ResideSelectors

Glycan specific ResidueSelectors use the graph to select groups of glycan residues

GlycanLayerSelector GlycanResidueSelector



Layer-based glycan modeling improves energies



GlycanTreeModeler Details

• Turn all residues Virtual
• Build glycan(s) out in defined layers
• Use MC GlycanSampler to sample DOFs 
• LinkageConformerMover
• SugarBBSampler
• GlycanTreeMinMover
• PackRotamersMover

• Layer + neighbor protein residues
• SmallMover

• +/- 15, 30, 45 degrees at decreasing probabilities



Layer-based glycan modeling: Example

Models from root out, making rest of glycan residues virtual until all 
are real.

<MOVERS>
<SimpleGlycosylateMover

name=“glycosylate”
positions=“133G,137G”
glycosylation=“man9” 

/>

<GlycanTreeModeler
name=“model_glycans” 
window=“0” 
layer=“1”

/>
</MOVERS>

<PROTOCOLS> 

<Add mover_name=glycosylate />
<Add mover_name=model_glycans />

</PROTOCOLS>



Layer-based glycan modeling: Typical

Models from root out, making rest of glycan residues virtual until all 
are real.

<MOVERS>
<SimpleGlycosylateMover

name=“glycosylate”
positions=“133G,137G”
glycosylation=“man9” 

/>

<GlycanTreeModeler
name=“model_glycans” 
window=“1” 
layer=“2”

/>
</MOVERS>

<PROTOCOLS> 

<Add mover_name=glycosylate />
<Add mover_name=model_glycans />

</PROTOCOLS>



Preliminary benchmarking and parameter optimization

1. Re-generate crystal 
contacts

2. Randomize 
torsion angles 3. Model glycans

Density fit > 0.8

Density fit < 0.8
• nstruct = 4000
• rounds = 60
• 5-10 min / decoy

• Resolution: < 2A
• 26 Glycan “Trees”
• 3-12 residues



Some glycan trees show “Folding” funnel

Notable examples 

3 top scoring with sub-angstrom accuracy
6 top scoring  < 1.5A



Best Result in Current Benchmark

Top 20% Top 10%

RMSD = .84 Å



Modeling 12 residues

Rosetta

Crystal

RMSD = 6.30 Å



Some more examples ...

1.03 Å

4nyq 3pfx

1.33 Å 1.48 Å

1gai 1juh

2.45 Å



Bent conformation pose a problem

Rosetta

Crystal

• Current protocol might not capture this very well
• Scoring of protein-glycan interactions inadequate

RMSD = 8.4 Å



Benchmark: Building into density maps

Density fit > 0.8

Density fit < 0.8

fast_elec_dens=25

Rcon data; nstruct=750



Building into electron density looks promising – but its not perfect, yet

Rcon Results
nstruct = 750



Preliminary data: 12/24 trees have sub-angstrom accuracy

Without density Using density (lower nstruct)

Modeled single “Trees” Modeled single “Trees”
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Current Benchmarking

• Parameter/Feature optimization:
• Shear Sampling
• Conformer sampling on Gaussian 
• Hybrid Sampling
• kT, scoring

• Improved sampling of near-natives

nstruct = 2500

nstruct = 1000



All New Tools from Project

• Sequon Creation:
• GlycanSequonCreator
• SequenceMotifMover
• SequenceMotifOperation
• ResfileCommandOperation

• Glycosylation:
• SimpleGlycosylateMover

• Residue Selection:
• GlycanResidueSelector
• GlycanLayerSelector
• GlycanSequonSelector

• Modeling:
• LinkageConformerMover
• GlycanTreeMinMover
• GlycanTreeSampler
• GlycanTreeModeler

• Frameworks:
• BBSampler Framework
• SimpleMetric Framework

• 6 metric types
• ~20 implemented metrics

• Apps:
• rosetta_scripts_jd3
• sugar_coat

• Etc:
• RosettaScripts in PyRosetta



Summary

1. Importing glycan structures form PDB drastically improved (Thanks Frank and Brandon for code contribution!)

2. Sequence motif-based Movers

3. Fragment framework extended to go beyond phi, psi and omega  

4. Many glycan-related ResidueSelectors

5. SimpleMetrics system introduced

1. Preliminary glycan sampling yields low-energy conformations, similar to native structures

2. Glycan symmetry and RMSD calculations implemented

3. Solving glycoprotein structures automatically is within reach

New tools in Rosetta



Tutorial

• 1) Create a Glycan sequence motif in a protein, which is recognized 
by Glycosyltransferace

• 2) Add a common glycan to the protein using the 
SimpleGlycosylateMover

• 3) Model the glycan using the GlycanTreeModeler

• 4) Model the glycan using experimental density, density fitting tools, 
and SimpleMetrics
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