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Overview

We will be using the RosettaCarbohydrate framework to build and model glycans. The GlycanTreeModeler, which
is our main method for modeling glycans will be published this summer. We will be using some custom glycan
options to load pdbs. First, one needs the -include_sugars option, which will tell Rosetta to load sugars and add
the sugar_bb energy term to a default scorefunction. This scoreterm is like rama for the sugar dihedrals which
connect each sugar residue.

-include_sugars

When loading structures from the PDB that include glycans, we use these options. This includes an option to write
out the structures in pdb format instead of the Rosetta format (which is actually better). Again, this is included in
the config/flags files you will be using.

-maintain_links
-auto_detect_glycan_connections
-alternate_3_letter_codes pdb_sugar
-write_glycan_pdb_codes

More information on working with glycans can be found at this page: Working With Glycans

https://doi.org/10.1002/jcc.24679
https://doi.org/10.1002/jcc.24679
https://www.rosettacommons.org/docs/wiki/application_documentation/carbohydrates/WorkingWithGlycans


Backbone Torsions, Residue Connections, and side-chains

A glycan tree is made up of many sugar residues. Each residue a ring. The ‘backbone’ of a glycan is the
connection between one residue and another. The chemical makeup of each sugar residue in this ‘linkage’ effects
the propensity/energy of each bacbone dihedral angle. In addition, sugars can be attached via different carbons of
the parent glycan. In this way, the chemical makeup and the attachment position effects the dihedral propensities.
Typically, there are two backbone dihedral angles, but this could be up to 4+ angles depending on the connection.
In IUPAC, the dihedrals of N are defined as the dihedrals between N and N-1 (IE - the parent linkage). The ASN
(or other glycosylated protein residue’s) dihedrals become part of the first glycan residue that is connected. For this
first first glycan residue that is connected to an ASN, it has 4 torsions, while the ASN now has none!
If you are creating a movemap for dihedral residues, please use the MoveMapFactory as this has the IUPAC
nomenclature of glycan residues built in in order to allow proper DOF sampling of the backbone residues, especially
for branching glycan trees. In general, all of our samplers should use residue selectors and internally will use the
MoveMapFactory to build movemaps internally.
A sugar’s side-chains are the constitutents of the glycan ring, which are typically an OH group or an acetyl group.
These are sample together at 60 degree angles by default during packing. A higher granularity of rotamers cannot
currently be handled in Rosetta, but 60 degrees seems adequete for our purposes.
Within Rosetta, glycan connectivity information is stored in the GlycanTreeSet, which is continually updated to
reflect any residue changes or additions to the pose. If you are using PyRosetta or C++, this info is always available
through the function

pose.glycan_tree_set()

Chemical information of each glycan residue can be accessed through the CarbohydrateInfo object, which is stored
in each ResidueType object:

pose.residue_type(i).carbohydrate_info()

Algorithm

The GlycanTreeModeler essentially builds glycans from the root (The first residue of the Tree) out to the trees
in a way that simulates a tree growing. It uses a notation of a ‘layer’ where the layer is defined as the number of
residues to the glycan root (with the glycan root being layer 0). Within modeling, all glycan residues other than the
ones being optimized are ‘virtualized’. In Rosetta, the term ‘Virtual’ means that these residues are present, but not
scored. (It should be noted that it is now possible to turn any residues Virtual and back to Real using two movers
in RosettaScripts: ConvertVirtualToRealMover and ConvertRealToVirtualMover. )
Within the modeling application, sampling of glycan DOFs is done through the GlycanSampler. The sam-
pler attempts to sample the large amount of DOFs available to a glycan tree. The GlycanSampler is a
WeightedRandomSampler, which is a container of highly specific sampling strategies, where each strategy is weighted
by a particular probability. At each apply, the mover selects one of these samplers using the probability set to it.
This is the same way the SnugDock algorithm for antibody modeling works.
Sampling is always scaled with the number of glycan residues that you are modeling, so run-time will increase
proportionally as well. If you are modeling a huge viral particle with lots of glycans, one can use quench mode,
which will optimize each glycan individually. Tpyically for these cases, multiple rounds of glycan modeling is desired.

GlycanSampler Major components

1. Glycan Conformers
These conformers have been generated through an in-depth bioinformatic analysis of the PDB using adaptive
kernal density estimates and are unique for each linkage type including glycan residues connected to ASN
residues. A conformer is a specific conformation of all of the dihedrals of a particular glycan linkage. Essentialy
glycan ‘fragments’ for a particular type of linkage.



2. SugarBB Sampling
This sampling is done through turning the sugar_bb energy term into a set of probabilities using the -log(e)
function. This allows us to sample on the QM derived torsonal potentials during modeling.

3. Random Sampling and Shear Moves
We sample random torsions +/- 15 , +/- 45, +/- 90 degrees each at decreasing probabilities at a 4:2:1 ratio of
sampling Small,Medium,Large. Shear sampling is done where torsions are set for two residues in order to
reduce downsteam effects and allow ‘flipping’ of the glycan torsions. The version that you are using in this
tutorial does not include shear sampling.

4. Minimization and Packing

1. Packing
Of the residues set to optimize, chooses a random residue and packs that residue and all residues out to
the tree that are not virtualized. We pack the sugar residues and any neighboring protein sidechains.
TaskOperations may be set to allow design of protein residues during this.

2. Minimization
Minimize Sugar residues by selecting a residue in what is set to model, and selecting all residues out to
the tree that are not virtualized.

General Setup and Inputs

You will be using a few different inputs. We will be designing in glycosylation spots in order to block antibody
binding at a highly curved epitope, and we will be loading a human structure from the PDB that has internal
glycans.

1. Notes for Tutorial Shortening
Typically, the value of -glycan_sampler_rounds is set to 25 (which typically is enough) and nstruct is about
5-10k per input structure. You may increase glycan_sampler_rounds to 100 and then decrease output to
1-2500 nstruct in order to have the same level of sampling, which will result in very good models as well. Since
this is denovo modeling of glycans, more nstruct is almost always better. For some tutorials, we may decrease
this value below our optimal value in order to shorten the length of the tutorial.

2. General Notes
This tutorial assumes that you have Rosetta added to your PATH variable. If you do not already have this
done, add the rosetta applications to your path. For the Meilerlab workshop (tcsh shell), do this:

setenv PATH ${PATH}:${HOME}/rosetta_workshop/rosetta/main/source/bin
setenv PATH ${PATH}:${HOME}/rosetta_workshop/rosetta/main/source/tools

We will be using JSON output of the scorefile, as this is much easier to work with in python and pandas. We
use the option -scorefile_format json

All of our common options for the tutorial are in the common file that you will copy to your work-
ing directory. Rosetta will look for this file in your working directory or your home folder in the
directory $HOME/.rosetta/flags. See this page for more info on using rosetta with custom con-
fig files: https://www.rosettacommons.org/docs/latest/rosetta_basics/running-rosetta-with-options#
common-options-and-default-user-configuration
All tutorials have generated output in output_files and their approximate time to finish on a single (core i7)
processor.

Tutorial

GlycanModeling is done through the RosettaScripts interface. Each tutorial has you copying a base XML and
adding/modifying specific components to achieve a goal.

https://www.rosettacommons.org/docs/latest/rosetta_basics/running-rosetta-with-options#common-options-and-default-user-configuration
https://www.rosettacommons.org/docs/latest/rosetta_basics/running-rosetta-with-options#common-options-and-default-user-configuration


Tutorial A: Epitope Blocking, De-novo Glycan Modeling

Here, we will start with the antigen known as Bee Hyaluronidase, from PDB ID 2J88. The PDB file has an antibody
bound to it as a HIGHLY immunogenic site. We would like to block this in order to use begin to use this enzyme
for therapy as Hyaluronidase can be effective in breaking down sugars in the extracellular matrix, allowing certain
larger drugs to get to regions of interest. The antibody is renumbered into the AHo numbering scheme that we use
in the RAbD tutorial, and it has been relaxed with constraints into the Rosetta energy function.
We will be designing in at least one optimal glycan at the most immunogenic site. Note that a prototocol called
SugarCoat is in development that will scan regions of interest for potential ideal glycosylation, however, one can
certainly do this manually as we do below.

1. Designing in a Glycosylation Site:
CreateGlycanSequonMover and CreateSequenceMotifMover

A sugar glycosylation site is known as a Sequon. The glycan sequon is made up of three protein residues
which are recognized by the GlycosylTransferase Enzyme during translation in the ER. This enzyme adds the
root of nascent glycan onto a protein. In this case, we use the sequon for ASN glycosylation. The sequon is
as follows: N[ˆP][S/T]. The [ˆP] notation means that any residue other than P can be there. The [S/T]
notation means that either S or T is recognized. This notation can be used to directly create Motifs in proteins
using the CreateSequenceMotifMover and associated SequenceMotifTaskOperation. Documentation for
these is available here:

• https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/xsd/mover_
CreateSequenceMotifMover_type

• https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/xsd/to_
SequenceMotifTaskOperation_type

The create GlycanSequonMover can also be used for glycosylation of different AA than ASN.

1. Design using a typical sequon

mkdir work_dir
cp ../input_files/common .
cp ../input_files/tutA11.xml .
cp ../input_files/2j88_complex.pdb .
cp ../input_files/2j88_antigen.pdb .

<CreateGlycanSequeonMover name="motif_creator" residue_selector="select"/>

Before we begin, take a look at the complex. Where can we introduce a glycan to block binding? Where do
you think the optimal glycan position would be for this particular antibody? Take a look at the xml. Is this
the position we are targeting? Typically, we may want to allow some backbone movement in our sequon.
The full glycan scanning protocol can be found in an input file, simple_glycan_scanner_manual.xml,
where we relax the motif residues with constraints, add the sequon, and then relax again, comparing the
energy between them to get the full energetic contributions of the sequon on the structure. In order to
reduce the run time in these tutorials, we will be removing this going forward.
Go ahead and run the xml (about 15 seconds)

rosetta_scripts.linuxgccrelease -s 2j88_antigen.pdb -native 2j88_antigen.pdb \
-parser:protocol tutA11.xml -parser:script_vars start=143A end=145A \
-out:prefix tutA11_

Take a look at the scorefile. Why do we have all these extra values here? These are the SimpleMetrics,
and they have replaced filters for calculating useful values in Rosetta. In the xml, we define a few
SimpleMetrics. We run a set before we actually create the sequon and then a set of metrics afterwards!
In the XML, you see we use a prefix in the RunSimpleMetrics mover to denote any metrics run after
the sequeon creation. Take a look at the protocol section and then at the RunSimpleMetrics movers we
have defined. What is the prefix that is used post-sequon creation? Ok, now go back to the score file -
what values have we output? Did we successfully design in our motif?

https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/xsd/mover_CreateSequenceMotifMover_type
https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/xsd/mover_CreateSequenceMotifMover_type
https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/xsd/to_SequenceMotifTaskOperation_type
https://www.rosettacommons.org/docs/wiki/scripting_documentation/RosettaScripts/xsd/to_SequenceMotifTaskOperation_type


2. Design using the N[ˆP][T] motif
This motif has been shown to have higher occupancy of the glycosation site with glycans in the resulting
protein. Glycosylation is not 100% in some cases at some positions for (currently) unknown reasons, but
this paper [] is a bioinformatic analysis that concludes that this motif has a higher occupancy. If we were
creating a drug, we can use chromatography during protein isolation to choose peaks which include our
glycan. Here, we are using the [-] notation as to not actually design the second position. We will use
what is in the native protein here.

cp ../input_files/tutA12.xml .

<CreateSequenceMotifMover name="create_sequon" residue_selector="p1" motif="N[-]T"/>

rosetta_scripts.linuxgccrelease -s 2j88_antigen.pdb -native 2j88_antigen.pdb \
-parser:protocol tutA12.xml -parser:script_vars start=143A end=145A \
-out:prefix tutA12_

Was the sequon successfully designed? Take a look at the scorefile. Is the sequence that was designed
different than the previous tutorial? (compare sequence to ‘post-sequon_sequence). How is the energy
difference from the native protein? Use the SimpleMetric output - look for the output that has native_delta
in the name. Did we change the SASA?

2. Adding a man5 glycan:
SimpleGlycosylateMover

Now, we will expand on our first tutorial by glycosylating afterward. We will use the common name for a
man5 sugar, which is a high-mannose branching glycan of 7 sugar residues (and 5 mannoses). You can use a
few common names to make glycosylation easier, or an IUPAC string, or a file that has the IUPAC string in
the first name of the file. Common names include man5,man7,man9 and a few others. You can find these in

Rosetta/main/database/chemical/carbohydrates/common_glycans

The IUPAC nomenclature of the man5 is as follows:

a-D-Manp-(1->3)-[a-D-Manp-(1->3)-[a-D-Manp-(1->6)]-a-D-Manp-(1->6)]
-b-D-Manp-(1->4)-b-D-GlcpNAc-(1->4)-b-D-GlcpNAc-

More information on IUPAC nomenclature of sugar trees is here: http://www.chem.qmul.ac.uk/iupac/2carb.
There is also a very detailed README in the common glycan directory for your reference.
Note that within the SimpleGlycosylateMover you may also give multiple glycans using the glycans option,
which will randomly choose a glycan tree to use for glycosylation from the list given. Glycosylation is not
deterministic in that you always get a man5 at a particular position and is influenced by a great deal of
structural biology that is not yet fully determined. For now, since we are aiming to create a drug and purifying
our result, using a man5 is sufficient. This takes about 15 seconds.

cp ../input_files/tutA2.xml .

<SimpleGlycosylateMover name="glycosylate" residue_selector="select" glycan="man5" />

rosetta_scripts.linuxgccrelease -s 2j88_antigen.pdb -native 2j88_antigen.pdb \
-parser:protocol tutA2.xml -parser:script_vars start=143A end=145A \
-out:prefix tutA2_

We built the glycan and have not done any modeling, so lets model some glycans!

3. Modeling glycans

http://www.chem.qmul.ac.uk/iupac/2carb


1. GlycanResidueSelector and the GlycanTreeModeler
We will run the previous tutorials in a single rosetta script where we end with modeling the glycan
residues. We use a very short run time and nstruct, so results will not be as clean as they would
otherwise, but this should give you an idea of how all this works. Typically, we would model different
positions of potential glycosylations, but here to save time, we will simply continue to build and model
the glycan position we started with. Output files have been provided for you if you wish to use these.
We will not be giving the mover a residue selector as it uses all glycans by default, but you can use the
GlycanResidueSelector to choose specific trees or even glycan residues within those trees to model. This
takes about 380 seconds to run.

cp ../input_files/tutA3.xml .

<GlycanTreeModeler name="model" layer_size="2" window_size="1" rounds="1" refine="false" />

rosetta_scripts.linuxgccrelease -s 2j88_antigen.pdb -native 2j88_antigen.pdb \
-parser:protocol tutA3.xml -parser:script_vars start=143A end=145A \
-out:prefix tutA3_ -nstruct 10

Use the scorefile.py script to get the lowest energy model.

scorefile.py --scores total_score --output tab tutA3_score.sc | sort -k2 -k1

How does it look? Load the native into pymol as well. Would this glycan block this particular antibody?
Where else could we place a glycan?

Tutorial B: Using Glycan Density

In this tutorial we will load a pdb directly into Rosetta with sugars already present. The config for this has been
provided for you.

cp ../input_files/pdb_flags .
cp ../input_files/4do4_refined.pdb.gz .
cp ../input_files/4do4_crys.symm .
cp ../input_files/4do4_symm.pdb .

The glycan tree that we will be working with is 5 residues long. I use coot to look at density maps. Density maps
were generated by downloading the cif file from the PDB and using PHENIX maps and default maps.params. This
command was used to generate them:

phenix.maps 4do4.pdb 4do4-sf.cif

The density map generated is too large to be distributed with the rest of the tuorial, so I have uploaded it to Google
Drive for you to download. https://drive.google.com/open?id=1h569jpwLxyHu7iHLG8eu2Q9_B-Q9e_C9 Please
download and place it in your working directory, if it’s not already there.

1. Calculating Density Fit
Although a structure may be solved with high resolution, not all solved residues may fit the density well.
A structure from the PDB is still a model afterall, informed through experimentation. This is especially
true of glycan residues, which are fairly mobile. Crystal contacts of neighboring proteins help to reduce the
movemment of glycans and may help to induce a state that can be solved more easily given high-resolution
density. In this tutorial, we will be using Rosetta to determine how well a residue fits into the given density.
There are methods to do this in the coot program, but we want to be able to do this for any structure in a
streamlined way - especially if we need to calculate RMSDs on only well-fitting glycan residues. The methods
we will be employing in Rosetta are based on Frank Dimaio’s work with Rosetta density.

https://drive.google.com/open?id=1h569jpwLxyHu7iHLG8eu2Q9_B-Q9e_C9


To do this, we will once again be employing the SimpleMetric system. In this case, we use the
PerResidueDensityFitMetric, which is a PerResidueRealMetric. This type of SimpleMetric calculates a
particular value for each residue given a residue selector. Very useful here. We will also be employing the
DensityFitResidueSelector, which uses the metric. Since this is a fairly slow metric, we will use in-built
functionality for using our calculated values from the metric, which are stored in the pose. We will then use
the SelectedResidueCountMetric to determine how many residues have great fit. In later tutorials, we will be
using the RMSDMetric with this selector in order to calculate RMSD on well-fitting glycan residues.
Residues higher than .8 are great fit to density. Residues between .6 - .8 are good fit to density Residues below
.4 fit to density are BAD fits

cp ../input_files/tutB1.xml .

<PerResidueDensityFitMetric name="fit_native" residue_selector="tree" output_as_pdb_nums="1"
sliding_window_size="1" match_res="1"/>

<DensityFitResidueSelector name="fits8" den_fit_metric="fit_native" cutoff=".8" use_cache="1"
fail_on_missing_cache="1"/>

<SelectedResidueCountMetric name="n_fits8" custom_type="fit8" residue_selector="fits8"/>

rosetta_scripts.linuxgccrelease -fconfig common pdb_flags \
-s 4do4_refined.pdb.gz -native 4do4_refined.pdb.gz -parser:protocol tutB1.xml \
-parser:script_vars branch=177A map=4do4_2mFo-DFc_map.ccp4 symmdef=4do4_crys.symm \
-out:prefix tutB1_

Run the xml and while it is running, take a look at the XML (runtime is about 80 seconds). It is fairly
complicated and we will be building on it during the rest of these tutorials. Note that we first define the density
metric, and then we use it within the selector. At the bottom, we add these to our set of native_metrics.
What other metrics are we using?
Ok, take a look at the scorefile. You can use the scorefile.py script to output as tabs if you would like. How
many residues have great fit to density (hint, look for fit6_selection_count and fit8_selection_count data
terms)? Are there any residues that fit poorly into the density?

2. Refinement into density
Here, we will be doing a short refinement protocol into the density, with its crystal symmetry. This is a short
protocol, but will work for our purposes. For a much longer (albeit very similar) refinement protocol of the
glycan and whole protein, see Frenz et al (referenced at the top of the page). The full protocol used in this
paper is included in the input files as cryoem_glycan_refinement.xml. Take a look and see how it compares
to what we are doing here. As usual, output files are available. Runtime for all 10 structures is about 2 hours.

cp ../input_files/tutB2.xml .

rosetta_scripts.linuxgccrelease -fconfig common pdb_flags map_flags \
-s 4do4_refined.pdb.gz -native 4do4_refined.pdb.gz -parser:protocol tutB2.xml \
-parser:script_vars branch=177A map=4do4_2mFo-DFc_map.ccp4 symmdef=4do4_crys.symm \
-out:prefix tutB2_ -nstruct 10

Are the density fit scores higher? How different are the RMSDs of the glycan residues? Take a look at the
structure of the lowest energy - how different does it look? Are any new contacts created? Were we able to
improve the density fit for some of those residues?

3. Denovo building into Density
In this tutorial, we will be once again loading our crystal structure with density and symmetry. However, we
will be randomizing the bb torsions and building the glycan out from scratch. In reality, we would have some
idea of what glycan we are building and we would glycosylate the protein with the chemical motif we have



figured out from means such as mass spec. We would then model the glycan to solve the crystal structure.
With the new PackerPalette machinery in Rosetta and the ability to design glycans, we could actually build a
protocol to sample chemical motifs of the glycans we are building out into the density, however, since this a
very very large combinatorial problem, we should have some idea of what exists in the structure.
We will first rebuild the glycan tree using the density as a guide, and then refine it further using what we
learned in the previous tutorial. Note that like tutorial B2, this one takes a good long while (4 hours)

cp ../input_files/tutB3.xml.

rosetta_scripts.linuxgccrelease -fconfig common pdb_flags map_flags \
-s 4do4_refined.pdb.gz -native 4do4_refined.pdb.gz -parser:protocol tutB3.xml \
-parser:script_vars branch=177A map=4do4_2mFo-DFc_map.ccp4 symmdef=4do4_crys.symm \
-out:prefix tutB3_ -nstruct 10

How are our RMSDs? Were we able to do enough sampling to get close to the native structure? Are the
energies acceptable? Are there parts of the glycan that are closer to native than others? Why might this be?
Is an nstruct of 10 enough??

Thank you for doing this tutorial! I hope you learned a lot and are ready to work with these crazy carbohydrates!
Cheers!
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