Tutorial 6: Scaffolding and Motif Grafting

Marion Sauer

Vanderbilt University

Rosetta Workshop May 10, 2018

2 Scaffolding

- Overview
- Setting up a scaffold database
- Side Chain Grafting
- Backbone Grafting
- Selection of Designs
- 3 Rosetta Remodel

 Introduction
 Scaffolding occococococo
 Rosetta Remodel occ
 Fold From Loops oc

 Various Grafting Methods in Rosetta

Rosetta Method	Name	Function
Rosetta XML Scripts	Side Chain Grafting Backbone Grafting	Scaffold Design Scaffold Design
ROSETTA APPLICATIONS	Rosetta Remodel Fold From Loops	Motif/Loop Design Scaffold/Loop Design

¹Silva, D., Correia, B.E., and Procko, E. (2016) Motif-driven Design of Protein-Protein Interactions. *Methods Mol. Biol.* 1414:285-304

Scaffolding ○●○○○○○○○○○ Rosetta Remodel 000 Fold From Loops

The Functional Binding Motif

¹Silva, D., Correia, B.E., and Procko, E. (2016) Motif-driven Design of Protein-Protein Interactions. *Methods Mol. Biol.* 1414:285-304

- High-resolution diffraction data (< 2.5 Å)
- Protein has been reported to be expressed in E. coli
- Single protein chain as an asymmetric unit
- No bound ligand or modified residues
- Scaffold proteins must be energy minimized using Rosetta

For future reference

A motif-focused library may be more useful, e.g. only including α helical scaffolds.

- $\textcircled{\sc 0}$ Choose motif and scaffold backbones that superimpose with very low RMSD (< 0.5 Å)
- **②** Transplant side chains from functional motif onto scaffold
- Obesign surrounding residues on the scaffold surface

Possible Considerations			
Pros	Cons		
Minimal number of changes	Often motif and scaffold		
to the scaffold	structures are too dissimilar,		
	limiting availability of scaffolds		
Increase chances of correctly			
folded designs			

Scaffolding

Rosetta Remodel 000 Fold From Loops

Side Chain Grafting XML

```
<MotifGraft name="motif_grafting"
context_structure="context.pdb"
motif_structure="motif.pdb"
RMSD_tolerance="0.3"
NC_points_RMSD_tolerance="0.5"
clash_score_cutoff="5"
clash_test_residue="GLY"
hotspots="3:7"
combinatory_fragment_size_delta="2:2"
full_motif_bb_alignment="1"
graft_only_hotspots_by_replace-
ment="1"
revert_graft_to_native_sequence="1"/>
```


Figure: Peptide structure contains LXXLL motif that is necessary for interaction.

¹Silva, D., Correia, B.E., and Procko, E. (2016) Motif-driven Design of Protein-Protein Interactions. *Methods Mol. Biol.* 1414:285-304

Scaffolding ○○○○○●○○○○○○ Rosetta Remodel

Fold From Loops

Selecting accurate models

¹Silva, D., Correia, B.E., and Procko, E. (2016) Motif-driven Design of Protein-Protein Interactions. *Methods Mol. Biol.* 1414:285-304

Introduction	Scaffolding	Rosetta Remodel	Fold From Loops
0		000	00
Backbone (Grafting Overview		

Figure:

- Align to target scaffold
- 2 Remove native scaffold backbone
- Model new epitope between termini
- Rigid-body orientation of new epitope and antibody relative to scaffold

¹Azoitei, M.L., Ban, Y.A., Julien, J., Bryson, S., Schroeter, A., Kalyuzhniy, O., Porter, J.R., Adachi, Y., Baker, D., Pai, E.F., and Schief, W.R. (2012) Computational Design of High-Affinity Epitope Scaffolds by Backbone Grafting of a Linear Epitope. J. Mol. Biol. 415:175-192

Introduction	Scaffolding	Rosetta Remodel	Fold From Loops
	00000000000		
Backbone	Grafting		

- Search for segments of scaffolds that align closely to the termini of the motif (both N- and C- terminal sides)
- The scaffold segment between these alignment points is replaced by the motif

Possible Considerations	
Pros	Cons
Extremely versatile – a loop	Can disrupt the overall fold
in the scaffold can be replaced	in the scaffold
by a different secondary	
structure or even with a	Redesign of the hydrophobic core
different amino acid length	and interface introduces unfavorable
	mutations to the scaffold

Careful filtering of designs

```
<MotifGraft name="motif_grafting" context_structure="context.pdb"
motif_structure="motif.pdb" RMSD_tolerance="1.0"
NC_points_RMSD_tolerance="1.0" clash_score_cutoff="5"
clack_tot_rosidue="CLV" hotpots="3.7" combinatory fragment_size
```

clash_test_residue="GLY" hotspots="3:7" combinatory_fragment_size_delta="2:2"
max_fragment_replacement_size_delta="-8:8" full_motif_bb_alignment="0"
graft_only_hotspots_by_replacement="0"/>

<PackRotamersMover name="design_core" task_operations="hotspot_repack, pido_far, core"/>

<PackRotamersMover name="design_boundary" task_operations="hotspot_repack, pido_med, core_and_boundary"/>

¹Silva, D., Correia, B.E., and Procko, E. (2016) Motif-driven Design of Protein-Protein Interactions. *Methods Mol. Biol.* 1414:285-304

Results to Keep

- Favorable binding energy $(\Delta \Delta G)$
- High shape complementarity
- Low number of buried unsatisfied H-bonding atoms

Results to Cull

- Buried charged residues
- Under-packed interfaces dominated by Ala residues

- Insert as few mutations as possible because probability of a designed sequence to properly fold is inversely correlated with the number of mutations imposed on the scaffold during the design process
- Check if the design is "stable" by comparing the score to the RMSD from the native model
- You may have to manually adjust designs

Introduction	Scaffolding	Rosetta Remodel	Fold From Loops
O	0000000000	●00	
Rosetta Rei	model		

¹Huang, P.H., Ban, Y.A., Richter, F., Andre, I., Vernon, R., Schief, W.R., and Baker, D. (2011) RosettaRemodel: A generalized framework for flexible backbone protein design. *PLoS One* 6(8):e24109. doi:10.1371/journal.pone.0024109.g001

Rosetta Remodel has 3 required inputs: the input PDB(s) – and also specify the chain to be remodeled, database location, and blueprint file.

An example blueprint file	for motif insertion		
1 V .			
2 L .			
3 E .			
4 I .			
5 L L PIKAA L			
O x I NATAA			
O x I NATAA			
O x I NATAA			
O x I NATAA			
6 N L PIKAA L			
7 G .			

Introduction	Scaffolding	Rosetta Remodel	Fold From Loops
O	00000000000	00●	
Motif grafting v	v. motif design		

Figure: Today's Rosetta Remodel tutorial: Optimization of the ER binding site to the LxxLL motif

Motif Grafting	Motif Design
Requires two structures, the motif and scaffold	Requires one structure
May require docking to graft motif	Often requires presence of ligand
	or small molecule

Fold From Loops (FFL)

Improvements in design capability

- Design motif scaffolds in the presence of a binder/ligand.
- Multi-segment or discontinous motif can be put into a scaffold using a multi-loop file.
- Motif does not have to be the same length as the segment being replaced.

Available now!

FFL2.0 is currently available in Rosetta 3.9

All material for this tutorial can be found in $\sim\!/{\rm rosetta_workshop/tutorials/scaffolding/}$

Contact: marion.f.sauer@vanderbilt.edu