
Protein Scaffold and Motif Design

Bold text means that these files and/or this information is provided.

Italicized text means that this material will NOT be conducted during the workshop.

fixed width text means you should type the command into your terminal.

If you want to try making files that already exist (e.g., input files), write them to a different directory! (mkdir
my_dir)

Introduction In the case of either protein scaffold or motif design, the binding site and binding orientation are
known, but need to be improved in some manner. More specifically, the purpose of scaffold design is to transplant a
known binding motif onto another peptide backbone, possibly to stabilize the binding motif, moderate binding, or
combine functional sites onto one backbone. In this case, one would use the known binding pose of the original
ligand to dock other peptides/proteins with a backbone segment matching the backbone geometry of the original
ligand into the known binding site and then optimize the side chain interactions within the binding site while
keeping the known binding motif. However, in the case of motif design, one may want to improve/destabilize the
binding affinity of a known ligand by altering side chain interactions between the ligand and the binding site. This
tutorial describes two methods to perform scaffold design and another method to do more general motif design.

Side Chain Grafting Tutorial This tutorial is designed to graft functional motifs onto protein scaffolds. There
are two different methods that are provided within this tutorial: Side Chain Grafting and Backbone Grafting. A
library of protein scaffolds is computationally scanned for possible graft sites. If the motif and scaffold backbones
superimpose with very low root mean squared deviation (RMSD<0.5), then only hot spot side chains need be
transplanted from the motif to the corresponding positions in the matching site of the scaffold. This is known as
Side Chain Grafting. Subsequently, surrounding residues on the scaffold surface that are in contact with the target,
or binding partner that binds to the motif, are designed for favorable interactions.

Side Chain Grafting makes the minimal number of changes to the scaffold, increasing the chances of obtaining
correctly folded designs during experimental validation. However, side chain grafting often is not possible because
the motif and scaffold structures are too dissimilar. In these cases, even though the motif and scaffold may have very
different structures, it is still possible to use an alternative method known as Backbone Grafting. During Backbone
Grafting, the algorithm looks for segments of the scaffold backbone that align closely to the termini of the motif
(both N- and C-terminal sides), and then the scaffold segment between these alignment points is replaced by the
motif. This technique is extremely versatile, for example, a loop in the scaffold might be replaced by a peptide motif
with different secondary structure, or even with a different amino acid length. Since the changes to the scaffold
structure following Backbone Grafting can disrupt the overall fold, it is important to design the hydrophobic core
to support the new backbone structure of the scaffold, followed by design of the protein-protein interface. The
Backbone Grafting procedure often introduces many mutations to the scaffold, requiring careful filtering of designs
to select those that present quality interfaces and high stability of the new scaffold.

In this tutorial we are going to use a co-crystal structure of Estrogen Receptor (ER) in complex with a helical
peptide from a transcriptional co-activator (1GWQ.pdb). We will follow the steps described below to design a
protein binder for ER.

1. Definition of the binding motif for interface design
2. Preparing a scaffold database
3. Matching for putative scaffolds (i.e., motif grafting)
4. Sequence design
5. Selection and Improvement of Designs

The first two steps are similar for both Side Chain and Backbone Grafting. Step 3 will be different because the two
methods use different algorithms to search for putative scaffolds to graft the binding/functional motif. Last two
steps are also similar but more rigorous for Backbone Grafting.



Create a directory in the SideChainGraft directory called my_files and switch to that directory. Although many
files you need for the tutorial are located in the input_files directory, we will work from my_files for the rest of this
section of the tutorial.

cd ~/rosetta_workshop/tutorials/scaffolding/SideChainGraft/
mkdir my_files
cd my_files

A. Prepare the input files for motif grafting.

In this step we will define the binding/functional motif that we want to graft onto a protein scaffold.

1. Download the co-complex from the Protein Databank (PDB). This complex is under the PDB ID “1gwq”.

The 1GWQ.pdb file is provided in the input_files directory. However the instructions for downloading this PDB file
are also provided below.

a. Go to http://www.rcsb.org and type 1gwq in the search bar.
b. Click on “Download Files” on the right side of the page, then “PDB Format”.
c. Save the PDB file in the my_files directory as 1GWQ.pdb.
d. Prepare the PDBs for running through Rosetta.

In general before running a PDB through Rosetta you should remove water molecules and all ligands that are
non-essential to your protocol. We will use an automated script to do this processing.

The 1GWQ.pdb file contains a dimer of ER-alpha bound to helical peptides. We want to pull the target structure,
i.e., ER-alpha (chain A, renamed as context.pdb) and the binding motif structure (chain C, renamed as motif.pdb)
from the PDB 1GWQ. For future reference, context.pdb serves as the binding partner you would be trying to
maintain binding affinity to, and motif.pdb would serve as the template for identifying scaffolds and grafting its
structure and sequence motif.

python2.7 ~/rosetta_workshop/rosetta/tools/protein_tools/scripts/clean_pdb.py 1GWQ A
python2.7 ~/rosetta_workshop/rosetta/tools/protein_tools/scripts/clean_pdb.py 1GWQ C
mv 1GWQ_A.pdb context.pdb
mv 1GWQ_C.pdb motif.pdb

Copy context.pdb and motif.pdb to my_files/ directory.

cp ../input_files/context.pdb .
cp ../input_files/motif.pdb .

B. Preparing the Scaffold Database

To prepare an inclusive scaffold database that can be searched for a variety of structural motifs, you can download
structures from the PDB (http://www.rcsb.org) based on the following four criteria using advanced search module:
(1) crystal structures with high-resolution x-ray diffraction data ( < 2.5 A), (2) the proteins had been reported
to be expressable in E. coli (this simplifies later experimental characterization), (3) a single protein chain in the
asymmetric unit (MotifGraft only works with monomeric scaffolds as grafting targets), and (4) no bound ligands or
modified residues.

In some circumstances, a focused scaffold library may produce more useful matches. For our particular example, the
peptide that seeds interface design has an alpha-helical conformation. Therefore, we also prepared a small focused
scaffold library of 18 helical proteins.

A scaffold database is provided in the scaffolds/ directory.

The scaffold PDB files were formatted for ROSETTA and subjected to an energy minimization step as described
below.

http://www.rcsb.org
http://www.rcsb.org


1. Make a list of all pdb files being used as scaffold.

ls ../scaffolds/*.pdb > scaffolds.list

2. For this tutorial, skip this step. Relax the pdb structures while constraining the structure to its initial
coordinates. Note that the “\” at the end of line 1 only marks the end of the line. If you copy-paste the
command into the terminal, remove the “\” before running so that the command is one line.

~/rosetta_workshop/rosetta/main/source/bin/relax.linuxgccrelease -ignore_unrecognized_res \
-relax:constrain_relax_to_start_coords -ex1 -ex2 -use_input_sc -l scaffolds.list

C. Motif Grafting and Sequence Design

Motif matching and interface design are distinct conceptual steps, but due to the flexibility of the RosettaScripts
framework, both can be included in a single computational step.

Since putative scaffold matching is different for Side Chain and Backbone Grafting, we are first going to use Side
Chain grafting procedure. It is recommended that you attempt Side Chain Grafting before Backbone Grafting for
your own functional motif, as it requires less changes in the protein scaffold, increasing the chances of obtaining
correctly folded designs during experimental validation.

Now that we have our input pdb files for the motif and context ready along with the scaffolds database to scan and
put the motif onto putative scaffolds, we will perform Side Chain Grafting using the MotifGraft_sc.xml script.

Copy the MotifGraft_sc.xml script from scripts/ directory to my_files/ directory.

cp ../scripts/MotifGraft_sc.xml .

Execute the MotifGraft_sc.xml rosettascripts using the following command. It will take approximately 15 minutes
to generate 1 scaffold for each of the 18 input protein strutcures. Again, if you copy-paste the command, make sure
to remove any “\” at the end of each line so that the command is one line.

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease \
-l scaffolds.list -use_input_sc -ex1 -ex2 -nstruct 1 \
-parser:protocol MotifGraft_sc.xml

Execution of this script will generate one design for each scaffold. To generate more than one design, you will
need to use the MultiplePoseMover. See https://www.rosettacommons.org/docs/latest/scripting_documentation/
RosettaScripts/Movers/movers_pages/RosettaScripts-MultiplePoseMover for documentation.

The expected_output/ directory has designs from a previous run. One should look at the designs in Pymol.

For further explanation of the options used in the XML script, see this methods paper http://www.ncbi.nlm.nih.
gov/pubmed/27094298.

D. Selection and Improvement of Designs

To date, no computational method has been developed that can predict with perfect accuracy which designs will be
functional when challenged experimentally. Therefore, it is wise to proceed with designed sequences that present
good metrics by multiple criteria.

1. Designs are initially filtered based on calculated metrics for interface quality, including a favorable binding
energy (ddG < 0 ROSETTA energy units, ideally the energy should be lower than the native interface from
which the motif was taken), high shape complementarity (Sc >0.65), and a low number of buried unsatisfied
hydrogen-bonding atoms. In the XML scripts above, these filters report to a score file and will also be
appended at the end of any ROSETTA output PDBs. If you are generating more than one designs per scaffold
(for example, 10 designs per scaffold), you can select them based on the total score before looking for ddG, Sc
and other metrics.

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/RosettaScripts-MultiplePoseMover
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/RosettaScripts-MultiplePoseMover
http://www.ncbi.nlm.nih.gov/pubmed/27094298
http://www.ncbi.nlm.nih.gov/pubmed/27094298


2. Once a set of designs has been selected based on the calculated metrics, it is important to perform human-
guided inspection of the designed structures. There are many qualities of interfaces that are apparent to
structural biologists that are not captured in standard metrics. Two common defects in ROSETTA-designed
structures that are very important to avoid are: i) buried charged residues and ii) under-packed interfaces
dominated by alanine residues.

3. Reverting designs back to native residues: It is also important to consider whether the designed scaffold will
fold to its intended structure; having a spectacular interface on a computational model is irrelevant if the
protein cannot fold in an experimental setting. This is particularly problematic for designed interfaces that
have a large surface area dominated by hydrophobic residues. It is generally assumed that the probability of
a designed sequence properly folding is inversely correlated with the number of mutations imposed on the
scaffold during the design process. Therefore, it is beneficial to be conservative and make as few mutations
as possible by reverting residues back to their native identities in a post-design stage. For this step, we will
revert one of the scaffold designs 1ji6_0001_0001.pdb to its native sequence from 1ji6_0001.pdb in complex
with the target (context.pdb).

cat context.pdb ../scaffolds/1ji6_0001.pdb >nativecplx.pdb

Note that ../scaffolds/1ji6_0001.pdb here is the protein structure that was designed during Side Chain grafting
by putting the motif.pdb onto a protein structure to generate 1ji6_0001_0001.pdb.

~/rosetta_workshop/rosetta/main/source/bin/revert_design_to_native.linuxgccrelease \
-revert_app:wt nativecplx.pdb -revert_app:design 1ji6_0001_0001.pdb -ex1 -ex2 -use_input_sc

4. Manually adjusting designs: The user may wish to correct a number of frequent problematic features in
ROSETTA designs, such as hydrophobic residues at the water-exposed interface edge, revert designed residues
back to their native identities, mutate buried charged residues to hydrophobics, etc. There are no hard rules
for manually improving designs; it is simply a matter of the designers preference and experience.

5. Filtering Designs based on folding probability: Many designed sequences will not fold correctly when experi-
mentally tested. We have found structure prediction to be a powerful filter; the designed amino acid sequences
when subjected to structure prediction calculations should yield similar structures to the designed models.
If structure prediction returns an alternative conformation, or fails to converge on an energy minimum in a
conformational landscape, then it is unlikely that the designed sequence will correctly fold.

Backbone Grafting Tutorial All the steps in Backbone Grafting tutorial are same as in the Side Chain Grafting
Tutorial. We have changed the scaffolds database for this part. The MotifGraft_bb.xml script incorporates the
backbone grafting algorithm for scaffold matching.

1. Create my_files directory in BackboneGraft directory.

cd ../../BackboneGraft/
mkdir my_files
cd my_files/

2. Motif and Context pdb files

cp ../input_files/motif.pdb .
cp ../input_files/context.pdb .

3. Make Scaffolds list.

ls ../scaffolds/*.pdb > scaffolds.list

4. Motif Grafting and Sequence Design



cp ../scripts/MotifGraft_bb.xml .

and execute the backbone grafting script using following commandline.

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease \
-l scaffolds.list -use_input_sc -nstruct 1 -parser:protocol MotifGraft_bb.xml

Note: running MotifGraft_bb.xml takes longer than MotifGraft_sc.xml.

5. Selection and Improvement of Designs
Designs from backbone grafting require extra attention, as the engineering of a protein core to support the
grafted motif can be challenging. Therefore, one should check to see how motif placement has changed the
structure of initial scaffold using PyMol or other protein visualization tool.

Rosetta Remodel Tutorial The remodel application is a Rosetta flexible loop-modeling tool that is tailor-made
for protein design – in this case, motif design. It uses a simple interface, the blueprint, to coordinate various protein
modeling tasks, which can include backbone building, sidechain design, disulfide pairing, and constraint assignments
during run-time, making the application a versatile tool for motif design. For this tutorial, we will reuse the previous
example, ER bound to a helical peptide from a transcriptional co-activator, but this time we will perform design on
the binding pocket on chain A of 1GWQ to search for stabilizing mutations within the binding interface. This is a
rather limited example of Rosetta Remodel, but given it’s flexible design capabilites, the purpose of this tutorial is
to orient you with the application input files and limitations.

1. Create my_files directory in RosettaRemodel directory.

cd ~/rosetta_workshop/tutorials/scaffolding/RosettaRemodel/
mkdir my_files
cd my_files/

2. Prepare the input PDBs. Like our previous examples we must first relax our input structure, 1gwq.pdb.
Both 1gwq.pdb and the relaxed structure 1gwq_0001.pdb are provided for you in the ../input_files/
directory. It is important to note that Rosetta Remodel can only design one chain during each simulation and
the chain considered for design must be consecutively numbered, starting from 1. Even though our relaxed
structure contains two chains, we will renumber the pdb file so that chain A begins with 1 using the option
flag “-out:file:renumber_pdb”. If we were to consider chain C for design, we would first want to remove all
information for chain A, and the renumber chain C starting with 1. Skip this step, but for reference, the
following was used to prepare the input files:

cp ../input_files/1gwq.pdb .
~/rosetta_workshop/rosetta/main/source/bin/relax.default.linuxgccrelease \

-s 1gwq.pdb -ignore_unrecognized_res -use_input_sc -constrain_relax_to_start_coords \
-relax:fast -out:file:renumber_pdb

3. Prepare the blueprint file. In general, a blueprint file contains three columns, where the first column is the
residue position, the second column is the residue identity – in one letter codes, such a A for alanine, and the
third is the design option to be performed on that residue. To fully understand all the design options included
in a blueprint file, it is highly recommended that you refer to Huang, P-S et al., 2011 (Reference 1 at the end
of this section). In our example blueprint file 1gwqA.blueprint, we will only consider residues for design
that are within 5 Angstoms of the helical peptide ligand, which includes residues 50, 52, 53, 56, 57, 62, 67,
68, 70, 71, 74, 75, 233, 234, 237 and 238 on chain A with the design specification “. ALLAA” in the third
column, which means that the backbone is fixed and all amino acid substitutions are allowing during design.
In addition, we will also specify to repack flanking resides with the design specification “. NATAA”. Otherwise,
all other residues will be fixed.

cp ../input_files/1gwqA.blueprint .



If you were to make the blueprint file yourself, first make a general blueprint file, specifying all positions as
fixed.

~/rosetta_workshop/rosetta/tools/remodel/getBluePrintFromCoords.pl \
-pdbfile 1gwq_0001.pdb > test.blueprint

Now specify the correct design options. The 1gwqA.blueprint has already been amended to include the
correct design options. However, it you were to make the changes yourself, you would need to change the
third column option “.” in the test.blueprint file to include the design options “ALLAA” or “NATAA” on the
lines corresponding to the residue number:

...
49 L . NATAA
50 V . ALLAA
51 H . NATAA
52 M . ALLAA
53 I . ALLAA
54 N . NATAA
55 W . NATAA
56 A . ALLAA
57 K . ALLAA
58 R . NATAA
...
61 G . NATAA
62 F . ALLAA
63 V . NATAA
...
66 T . NATAA
67 L . ALLAA
68 H . ALLAA
69 D . NATAA
70 Q . ALLAA
71 V . ALLAA
72 H . NATAA
73 L . NATAA
74 L . ALLAA
75 E . ALLAA
76 C . NATAA
...
232 Y . NATAA
233 D . ALLAA
234 L . ALLAA
235 L . NATAA
236 L . NATAA
237 E . ALLAA
238 M . ALLAA
239 L . NATAA
...

4. Run RosettaRemodel Executing the command below will take much longer than the length of this session, so
please don’t try to run it as is. All output files have been generated for the following analysis step. However,
if you do want to run it, change the options “-num_trajectory 50” to “”-num_trajectory 1" and “-save_top
10” to “-save_top 1”. Since our input pdb contains two chains, it is important to note that Rosetta Remodel
will work on the first chain unless the flag “-chain” specifies the chain to remodel. Moreover, Rosetta Remodel
can only work on one chain at a time (at least by default), and depending on which version of Rosetta you
use, it is possible to get an error regarding missing residues. Even if you only have one chain, it is suggested
you use the “-run::chain” option.



~/rosetta_workshop/rosetta/main/source/bin/remodel.default.linuxgccrelease \
-s input_files/1gwq_0001.pdb -remodel:blueprint input_files/1gwqA.blueprint \
-run::chain A -extrachi_cutoff 1 -ex1 -ex2 -use_input_sc \
-num_trajectory 50 -save_top 10 -use_clusters false -find_neighbors

For those who are specificially interested in protein design techniques for motif transplanation onto another
backbone without docking the ligand to the binding site, this can be achieved using the “0 x I” (insertion)
notation in the blueprint file, indicating the location and length of the motif graft site to insert into your
backbone of choice, and the specified option “-remodel:domainFusion:insert_segment_from_pdb” which
specfies the PDB file of the motif sequence you would like to insert. For the motif PDB file, the PDB does not
need to be renumbered so that it starts with 1, but the PDB file that serves as the graft site will need to be
renumbered.
If you are using manual mode (which most likely you will be), it is recommended that you assign all positions
included in the rebuilt segment, or else they will be turned into valines since valine is the default residue
during the centroid phase. The blueprint file is essentially like a resfile, where you can declare your design
specifications to guide the all-atom phase – and Rosetta Remodel works best when you explicitly tell it what
to do!
If you would like to have more examples of use cases for Rosetta Remodel, refer to the Rosetta Remodel wiki
documentation (listed below) for additional information and documentation.

5. Analyze results
Rosetta Remodel handles its own file I/O and only uses the job_distributor to launch processes. Therefore,
typically you would expect all output in the format of XXXX_0001.pdb with the 0001 suffix increasing
incrementally to match the total number of requested output models. That is not the case in Rosetta Remodel,
which outputs 1.pdb, 2.pdb, etc., for the total number of models you requested with “-save_top ”. Rosetta
Remodel will only output a single file as XXXX_0001.pdb, which represents the lowest scoring model from
the “-save_top” models.
The type of analysis you would want to perform is dependent on what your desired outcome is. Since Rosetta
Remodel automatically chooses the lowest energy model, you could just trust this model for your future
experiments. You should, however, do further analysis of your models to understand what changes Rosetta
made to the original structure/sequence. Since we performed design on the ligand binding pocket of ER, we
should start looking at two things: i) The RMSD of the models to the starting model, and ii) the sequence
identity of the designed models. Calculating the RMSD for design models is likely not very informative, but
for loop insertion or motif grafting, it is very important to check if your starting backbone retains its original
geometry to some degree. To calculate the RMSD of the output models to the input model 1gwq_0001.pdb:

calculate_rmsd.py -n input_files/1gwq_0001.pdb -o output -d expected_output/*.pdb
cat output_align_all_model.tsv

Since this tutorial only used design, a better way to assess the output models is look at the type of designed
mutations Rosetta introduced in the ER binding pocket. You can do this either by generating a weblogo or by
performing a multiple sequence alignment of the output sequences. To generate a weblogo:

deep_analysis --prefix designs_ --native input_files/1gwq_0001.pdb --stack_width 30 --seq \
--format pdf --title "Designed residue frequencies" --labels sequence_numbers --debug \
--res input_files/1gwqA.resfile -s d expected_output/output_pdbs/* \
--path /dors/meilerlab/apps/Linux2/x86_64/weblogo/3.5/weblogo

Or to do a multiple sequence alignment:

cat *_A.fasta > output.fasta
clustalw output.fasta



By looking at the weblogo of the designed positions, weblogo.png in the expected_output/ directory, Rosetta
Remodel quickly converges onto a single sequence, with the exception of positions 71 and 75, which helps
explain why all designs have an 0.11 Angstrom RMSD to the starting relaxed model. With the multiple
sequence alignment file, output.aln, you can see that 6.pdb is the only model with a differing sequence.
However, if you notice in position 233, Rosetta Remodel completely replaces the native aspartic acid for a
glutamic acid, which may be due to Rosetta’s sampling bias. For this tutorial, it is likely best to visualize
changes to side chain contacts to see why Rosetta replaced the native sequence. To do this open PyMOL
and load the output PDB files (1.pdb - 10.pdb) and the starting PDB, 1gwq_0001.pdb. You can compare
similarities of the side chain contacts by selecting the designed residue and the residue it makes contact with,
followed by “Show -> side chain -> as sticks” and then “Action -> find -> any contacts -> within 3 (or 4
for some) Angstroms”, which should illustrate the number and length of each of the side chain contacts. By
comparing the designed and native side chain contacts, it is generally observed that Rosetta favors increased
number of side chain interactions, which presumably correlates with a higher binding interface stability. To go
one step further, you should look at individual residue score breakdowns. To do this:

~/rosetta_workshop/rosetta/main/source/bin/residue_energy_breakdown.linuxgccrelease \
-in:file:l input_files/compare.list -out:file:silent per_res.sc

The output file expected_output/per_res.sc is a table of all onebody and pairwise interaction scores for
each residue in each model. The score file was converted to a csv file, per_res.csv so that you can create a
plot of all of the designed positions and the onebody total score values of each of the models. A plot of the
per-residue total scores has been provided for you, expected_output/per_res_scores.png, but if you
would like to generate/change the plot in anyway, you can start with this:

cp expected_output/per_res.csv .
R
> install.packages("ggplot2","cowplot")
> library(ggplot2, cowplot)
> setwd("~/rosetta_workshop/tutorials/scaffolding/Rosetta_Remodel/")
> data <- read.csv("per_res.csv", header = T, sep = ",")
> data$resi1 <- as.factor(data$resi1)
> designs = subset(data, resi1=="50"|resi1=="52"|resi1=="53"|resi1=="56"|resi1=="57"| \

resi1=="62"|resi1=="67"|resi1=="68"|resi1=="70"|resi1=="71"|resi1=="74"|resi1=="75"| \
resi1=="233"|resi1=="234"|resi1=="237"|resi1=="238")

> onebody = subset(designs, restype2=="onebody")
> ggplot(onebody, aes(x = description, y = total, fill = pose_id)) + geom_col() + \

facet_grid(~ resi1) + labs(x = "Designed residue position", \
y = "Rosetta Total Score per residue (in REU)") + theme(axis.text.x = element_blank(), \
strip.background = element_rect(color = "black", fill = "white"))

Note: “>” represents the R environment, and all commands must be typed in an R shell. After you have
finished making your plot, type “q()” to exit out of the R shell.
By looking at the individual onebody score terms, it becomes apparent that Rosetta Remodel per residue
scores are the same, or at least very similar to the native structure, with some key exceptions. For position
68 on chain A, Rosetta scores the native histidine as highly unfavorable, whereas the models have a much
lower-scoring aspartic acid. If you were to visualize the side chain interactions of 1gwq_0001.pdb and one
of the output models (say 1.pdb), you can see that in the original sequence the native histidine does not
make any contacts with its neighboring side chains. By replacing the histidine with an aspartic acid, the now
negatively charged residue is able to make a polar contact with the histine in the ligand (H247). However, by
replacing the native histidine with a negatively charged aspartic acid, there are now three negatively charged
residues in close vicinity, that is D68, S158, and S159, in the model sequence, which may or may not be an
issue. This is where also looking at the pairwise per residue scores would be useful to see if the native or
designed sequence is likely to be favorable or not. For position 233, even though Rosetta Remodel replaces
the native aspartic acid everytime, the native sequence scores more favorably than any of the designed E233
positions, and in this case you should probably assume that the D233E mutation is not a functionally relevant
mutation. Time permitting, go back and take a look at positions 71 and 75, which Rosetta does not converge
on a single sequence or score.
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