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In this tutorial we will review basic but important capabilities and syntax for BCL standalone use. The 
motivation for this section is that it is a useful prerequisite to performing small molecule drug design. It is 
challenging to do virtual screening or drug design if we are unable to perform quality control on our input 
structures, orient them in space the way that we need, or compute chemical properties. Moreover, if your goal 
is to use the BCL in the context of the BCL-Rosetta integration, it is helpful to know a bit about the functionality 
of the BCL by itself because it will help in understanding why the BCL-Rosetta integration is designed the way 
that it is. 
 
This tutorial will be organized into several sections. First, we will quickly review the overarching syntax used to 
call BCL applications. Second, we will perform some standard small molecule processing and quality control 
tasks so that you can get a feeling for how to manipulate lists of molecules in the BCL. Third, we will introduce 
you to fragment creation. Finally, we will review basic usage for small molecule conformer generation, 
comparisons, and molecular alignment. 
 
Some of these topics are independently capable of filling an entire tutorial. Here, we will do just enough that 
you can continue to explore on your own. For details and background, we recommend checking out a few 
manuscripts1–5. At the time of writing, we also have a pedagogical manuscript in revision at Frontiers in 
Pharmacology. The contents of this tutorial align with sections 2 – 5 of that manuscript, which we have 
provided with the tutorial materials as a preprint1. For additional details, please use the aforementioned 
manuscripts as reference material. 
 
Before we get started, it will make your life easier if you set the path to your BCL directory as an environment 
variable. For example, the main BCL directory for these tutorials in the Meiler Lab is in /sb/apps/bcl/bcl. 

In bash, we can set this as an environment variable by doing the following: 
 

 
In tcsh, this is accomplished with a similar command: 
 

 
We can also add the BCL executable to our PATH environment variable. 
 

Note that the “bcl.exe” is interchangeable with “bcl-apps-static.exe” in 
${BCL}/build/linux64_release/bin 

 
Let’s get started! 
 
  

export BCL=/sb/apps/bcl/bcl 

setenv BCL “/sb/apps/bcl/bcl” 

export PATH=/sb/apps/bcl/bcl/build/linux64_release/bin:$PATH 



Part 1. Introduction to BCL command-line syntax 
Much like Rosetta, the BCL is an application-based software package written in C++. Unlike Rosetta, the primary 
API is packaged into a few core application groups. The application groups each contain multiple applications.  
 
To view the application groups and associated applications, run the BCL help command: 
 

 
The BCL has application groups for cheminformatics, protein folding, machine learning, and other tasks.  
The syntax to access a specific BCL application is to first specify its application group in all lower-case letters,  a 
“:”, and then the application in FirstLetterIsCapitalizedInEachWord syntax.  
 

 
For example, to view the applications associated with the application group “molecule” run the application 
group help command: 
 

 
The help menu for any application cans similarly be accessed as 
 

 
These help options list the basic arguments and parameters available for each application. More detailed help 
options are available for individual application arguments. We will demonstrate examples of this functionality 
as we go. The important thing to note is that liberal use of the help keyword on the command-line will display 
internal documentation for the BCL. 
 
  

bcl.exe --help 

bcl.exe appgroup:Application 

bcl.exe molecule:Help 

bcl.exe appgroup:Application --help 



Part 2. Molecule preparation and processing 
 
Subsection 2A – MDL SD Files 
 
The BCL reads molecules in the MDL SDF format. This is a common format used in computational chemistry and 
cheminformatics. An SDF contains blocks of molecules organized into rows of atoms and rows of bonds. Let’s 
look at an SDF of a piperazine ring: 
 

 
The first three lines are name lines. The fourth line begins with the numbers of atoms and bonds, respectively, 
which in this case reads 16 and 16. The V2000 SDF format has a limit of 999 atoms per entry. The next block of 
lines corresponds to each atom in the molecule. If an SDF is loaded into the BCL, the atom vector indices will 
correspond to these rows (except they will be 0-indexed).  
 

piperazine 

  PyMOL2.3          3D                             0 

 

 16 16  0  0  0  0  0  0  0  0999 V2000 

    1.0862    0.1858   -0.9903 C   0  0  0  0  0  0  0  0  0  0  0  0 

   -1.2829    0.6961   -0.2533 C   0  0  0  0  0  0  0  0  0  0  0  0 

   -1.0862   -0.1857    0.9903 C   0  0  0  0  0  0  0  0  0  0  0  0 

    1.2830   -0.6960    0.2534 C   0  0  0  0  0  0  0  0  0  0  0  0 

   -0.6440   -0.6818   -1.5984 H   0  0  0  0  0  0  0  0  0  0  0  0 

    0.4645   -0.8770    2.1009 H   0  0  0  0  0  0  0  0  0  0  0  0 

   -0.3575    0.2458   -1.3197 N   0  0  0  0  0  0  0  0  0  0  0  0 

    0.3575   -0.2458    1.3198 N   0  0  0  0  0  0  0  0  0  0  0  0 

    1.4337    1.2236   -0.7688 H   0  0  0  0  0  0  0  0  0  0  0  0 

    1.7144   -0.1956   -1.8319 H   0  0  0  0  0  0  0  0  0  0  0  0 

   -1.0317    1.7547   -0.0019 H   0  0  0  0  0  0  0  0  0  0  0  0 

   -2.3555    0.6812   -0.5660 H   0  0  0  0  0  0  0  0  0  0  0  0 

   -1.7144    0.1956    1.8319 H   0  0  0  0  0  0  0  0  0  0  0  0 

   -1.4337   -1.2235    0.7687 H   0  0  0  0  0  0  0  0  0  0  0  0 

    1.0318   -1.7546    0.0019 H   0  0  0  0  0  0  0  0  0  0  0  0 

    2.3556   -0.6811    0.5660 H   0  0  0  0  0  0  0  0  0  0  0  0 

  1  4  1  0  0  0  0 

  1  7  1  0  0  0  0 

  1  9  1  0  0  0  0 

  1 10  1  0  0  0  0 

  2  3  1  0  0  0  0 

  2 11  1  0  0  0  0 

  2 12  1  0  0  0  0 

  3  8  1  0  0  0  0 

  3 13  1  0  0  0  0 

  3 14  1  0  0  0  0 

  4 15  1  0  0  0  0 

  4 16  1  0  0  0  0 

  2  7  1  0  0  0  0 

  5  7  1  0  0  0  0 

  4  8  1  0  0  0  0 

  6  8  1  0  0  0  0 

M  END 

$$$$ 



The first three columns of the on the atom rows are the X, Y, and Z coordinates, respectively. The element type 
follows in the next column. The columns following the element type are used to indicate isotope mass 
deviations for a particular element and atomic charge. There are generally five or more columns that are 
unused and contain only zeroes. We will look at those columns in more detail in Tutorial 4 when we discuss 
reaction-based drug design. 
 
The bond block columns are organized in triplets indicating the two bonded atom partners beginning with the 
lower index atom followed by the bond type connecting the two atoms. Bond orders are specified as expected 
– single bonds with ‘1’, double bonds with ‘2’, and triple bonds with ‘3’. Aromatic structures are frequently 
notated as alternating single and double bonds (“Kekule form”); however, aromatic bonds can also be explicitly 
indicated with ‘4’ in the bond order column. The fourth column may specify stereoscopic information.  
 
The end of a single molecule is indicated with “M END”. Afterward, “$$$$” is used as a separator for distinct 
molecule entries. The “$$$$” is the primary difference between a MOL file and a V2000 SD file, as the latter can 
contain multiple molecules. 
 
For more detailed references on SD file format, check out http://c4.cabrillo.edu/404/ctfile.pdf and 
http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx.  
 
Subsection 2B – molecule:Filter 
 
Molecules obtained from public databases, manual drawing, conversion from 1D strings or 2D topologies, etc., 
may contain errors. These errors can be in the form of incorrect bond order assignments for a particular 
protonation state, formal charge (e.g., if a compound is isolated from a salt complex), invalid atom types (e.g., 
carbon atoms making 5 or 6 bonds, disallowed hybridizations, etc.), severely clashed geometries, or other 
errors. Consequently, an important component of any cheminformatics project is identifying and filtering 
molecules that fail certain criteria. In the BCL, this step is typically performed with the molecule:Filter 
application. 
 
In this section we will perform a series of molecule processing steps on a dataset of molecules that we use for 
benchmarking small molecule conformation generation algorithms. The dataset is called the Platinum Diverse 
Dataset, and it is a subset of high-quality ligands in their protein-bound 3D conformations assembled by 
Friedrich et al. 2017B6. 
 
Unless otherwise stated, all commands in this tutorial are run from the 
BCL_Workshop_2022/Tutorial_1/inputs/ directory. 
 

 
This command performs the following actions as the molecules are read: 

• loads the SDF platinum_diverse_dataset_2017_01.sdf (input_filenames) 

• saturates all molecules with hydrogen atoms (add_h) 

• neutralizes any formal charges (neutralize) 

And then filters based on the following criteria: 

bcl.exe molecule:Filter \ 

-input_filenames platinum_diverse_dataset_2017_01.sdf.gz \ 

-output_matched platinum_diverse_dataset_2017_01.matched.sdf.gz \  

-output_unmatched platinum_diverse_dataset_2017_01.unmatched.sdf.gz \  

-add_h -neutralize -defined_atom_types –simple \ 

-logger File platinum_diverse_dataset_2017_01.Filter.log 

http://c4.cabrillo.edu/404/ctfile.pdf
http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx


• whether the molecules have valid atom types (e.g., carbon atoms making five covalent bonds are not 
valid) (defined_atom_types) 

• whether the molecules have simple/defined connectivity (i.e., that there are not multiple non-bonded 
components, such as salt complexes, in the input file)(simple) 

Molecules are output into one of two files: 

• Molecules that pass all criteria (have valid atom types and have simple connectivity) are output to 
“platinum_diverse_dataset_2017_01.matched.sdf.gz” 

• Molecules that fail one or more criteria are output to 
“platinum_diverse_dataset_2017_01.unmatched.sdf.gz” 

 
The terminal output reads: 
 

 
In this case, all molecules pass the filter. This allows the user to review the molecules that failed the filter and 
choose to either fix them or continue without them. 
The molecule:Filter application can also separate molecules by property and/or substructure. Filter out 
molecules that contain 10 or more rotatable bonds and a topological polar surface area (TPSA) less than 140 Å2: 
 

 
Of 2859 molecules, 395 were first filtered out for have a TPSA ≥ 140 Å2, and then an additional 84 molecules 
that had greater than 10 rotatable bonds were filtered out. Notice that the filters are applied sequentially, and 
molecules must pass both filters to be output to the matched file. Alternatively, the any flag can be specified 
such that if a molecule meets any one of the filter criteria, then it is output to the matched file: 
 

 
In this example, 2801 molecules passed at least one of the filters and only 58 were filtered out.  

=std=bcl::app=> Loaded 2859 molecules in 00:00:01 

=std=bcl::app=> 2859 molecules passed filter with defined gasteiger atom 

types   in 00:00:00, 0 additional molecules filtered out 

=std=bcl::app=> 2859 molecules passed filter with simple connectivity -> 

not a molecular complex containing at least one fragment from   in 

00:00:00, 0 additional molecules filtered out 

=std=bcl::app=> Wrote 2859 molecules that matched all criteria in 00:00:00 

bcl.exe molecule:Filter \ 

-input_filenames platinum_diverse_dataset_2017_01.sdf.gz \ 

-output_matched platinum_diverse_dataset_2017_01.veber_pass.sdf.gz \ 

-output_unmatched platinum_diverse_dataset_2017_01.veber_fail.sdf.gz \ 

-add_h -neutralize \ 

-compare_property_values TopologicalPolarSurfaceArea less 140 \ 

NRotBond less_equal 10 \ 

-logger File platinum_diverse_dataset_2017_01.veber.log 

bcl.exe molecule:Filter \ 

-input_filenames platinum_diverse_dataset_2017_01.sdf.gz \ 

-output_matched platinum_diverse_dataset_2017_01.any_pass.sdf.gz \ 

-output_unmatched platinum_diverse_dataset_2017_01.any_fail.sdf.gz \ 

-add_h -neutralize \ 

-compare_property_values TopologicalPolarSurfaceArea less 140 \ 

NRotBond less_equal 10 \ 

-any -logger File platinum_diverse_dataset_2017_01.any.log 



One may also filter based on substructure similarity. This is particularly useful if there are specific substructures 
that are desired or that need to be avoided. For example, we can filter out molecules that contain six-
membered aromatic carbon rings (i.e., benzene or benzene-components of larger aromatic ring systems): 
 

 
The rotamer library file contains a benzene ring. In addition to the standard use cases presented here, 
molecule:Filter can identify molecules with clashes in 3D space, conformers outside of some tolerance 
value from a reference conformer, exact substructure matches, specific chemical properties, and more. To see 
these options, you can pass the following command: 
 

 
We regularly use molecule:Filter prior to drug screening and design. 

 
Subsection 2C – molecule:Unique 
 
We also frequently filter datasets to remove redundant molecules. This is especially important when preparing 
datasets for QSAR model training and testing. If molecules appear more than once in a dataset, then it is 
possible that they could appear simultaneously in the training and test sets, leading to an artificial inflation in 
test set performance. As there are several special considerations to make here, this is a distinct application from 
molecule:Filter. 
 
For this task we use the molecule:Unique application. It has four levels at which it can compare and 

differentiate molecules:  
1. Constitutions – compares atom identities and connectivity disregarding stereochemistry 
2. Configurations – compares atom identities, connectivity, and stereochemistry 
3. Conformations – compares configurations as well as 3D conformations 
4. Exact – checks to see whether atom identities and order are equal with the same connectivities, bond orders, 
stereochemistry, and 3D coordinates.  
 
The first time the BCL encounters a molecule in an SDF it will store in memory. Any additional encounters with 
the same molecule (at any of the four levels described above) will be marked as duplicate encounters. The 
default behavior is to output only the first encounter of each molecule. There are cases in which a molecule 
appears multiple times but has different MDL properties and/or property values. It may not be desirable to lose 
the stored properties on duplicate compounds. In such cases, the user can choose to merge the properties or 
overwrite the duplicate descriptors instead.  
 
For example, let’s say we are building a virtual screening model for dopamine receptor D3 (DRD3) and D5 
(DRD5) antagonists. We have collected molecules that have confirmatory screening data for each of those 
targets. We may want to know how many molecules overlap between these two datasets. This is something 
that we can check with molecule:Unique. 
 

bcl.exe molecule:Filter \ 

-input_filenames platinum_diverse_dataset_2017_01.sdf.gz \ 

-output_matched drugbank_nonexperimental.simple.benzene.sdf.gz \ 

-output_unmatched drugbank_nonexperimental.simple.no_benzene.sdf.gz \ 

-contains  bcl/rotamer_library/ring_libraries/individual_rings/000.sdf.gz  

bcl.exe molecule:Filter –help 



 
Consider the following questions: 

1. How many duplicate molecules do you have at the level of Configurations?  
2. How about at the level of Conformations? 
3. Does it make sense why one has more duplicates than another? 

 
Importantly, when you discard duplicates, you also discard all of their MDL property information. In our 
example here, we passed the DRD3 molecules first, which means that duplicates identified in the DRD5 set will 
be discarded. There are some property labels that are unique between these two files – specifically, 
“DRD3_Activity_uM” and “DRD5_Activity_uM”. If we want to discard duplicates and simultaneously maintain 
any unique properties on the discarded molecules, we can pass the merge_descriptors flag at runtime.  
 

 
After you run this command, can you think of a way to use molecule:Filter to preserve only the 
molecules that have both the DRD3_Activity_uM and DRD5_Activity_uM result labels? Hint: use the 
has_properties flag. Give it a whirl – how many compounds have both property labels? It should be the same 
number as the number of duplicates. 
 
Subsection 2D – molecule:Reorder 
 
You may have considered in the previous section that you do not always want to discard the first occurrence of 
a molecule in a file. This is especially the case if you have redundant molecules within a single dataset. 
Fortunately, we can sort molecules from a single or multiple input files according to properties of interest. Sort 
molecules in ascending order by DRD3_Activity_uM and output the top 10 highest affinity molecules: 
 

 
Repeat the process, but this time sort by the lowest affinity molecules for DRD3.  
 

bcl.exe molecule:Unique \ 

-compare Configurations \ 

-remove_h \ 

-neutralize \ 

-input_filenames DRD3.training_molecules.sdf.gz 

DRD5.training_molecules.sdf.gz \ 

-output ../outputs/DRD3-5.training_molecules.unique_configs.sdf.gz 

bcl.exe molecule:Unique \ 

-compare Configurations \ 

-remove_h \ 

-neutralize \ 

-input_filenames DRD3.training_molecules.sdf.gz \ 

DRD5.training_molecules.sdf.gz \ 

-output ../outputs/DRD3-5.training_molecules.unique_configs.sdf.gz 

-merge_descriptors 

bcl.exe molecule:Reorder \ 

-input_filenames ../outputs/DRD3-

5.training_molecules.unique_configs.labeled.sdf.gz \ 

-output ../DRD3-5.training_molecules.unique_configs.sorted.top_10.sdf.gz \ 

-sort DRD3_Activity_uM \ 

-output_max 10 



 
In this example, the reverse flag indicates that the scores will be sorted from largest to smallest (default 
behavior is smallest to largest). The output_max flag limits the number of molecules that are output 
(proceeding in sorted order).  
 
Are there any compounds in the top 10 molecules for DRD3 that have very low affinity for DRD5 (i.e., are 
selective)? How about any compounds in the bottom 10 molecules for DRD3 that are high affinity for DRD5? 
Visualize any selective compounds with PyMOL. 
 
Do any of your compounds contain aromatic rings? Aromaticity is automatically detected when reading input 
files; however, output structures are kekulized (represented as alternating single-double bonds) by default. To 
output an SDF that contains explicit aromatic bonds, pass the explicit_aromaticity flag on the 
command line.  
 

 
Compare the output files from our molecule:Reorder examples by visualizing the output in PyMOL. Do 
you notice anything about the two versions of bottom 10 molecules? You should see that PyMOL interprets the 
aromatic rings differently. This is because in the last file we generated the explicit_aromaticity flag set 
aromatic bond orders to be “4” in the SDF. Check out the SDF using a text editor and you will see. 
 
Subsection 2E – molecule:Coordinates 
 
The last molecule processing application that we will cover is molecule:Coordinates. This is an 

application that performs several convenience tasks related to retrieving coordinate information. First, 
molecule:Coordinates can recenter all molecules in the input file(s) to the origin. Second, it can 

compute molecular centroids. Neither of these are particularly complex tasks, but they are useful. 
 
Third, and perhaps most importantly, molecule:Coordinates can compute statistics on molecular 
conformers. For example, passing the statistics flag compute statistics on bond lengths, bond angles, and 
dihedral angles. Passing the dihedral_scores flag will compute a per-dihedral breakdown of the BCL 3D 
conformer score. The BCL 3D conformer score, or ConfScore, computes an amide non-planarity penalty in 
addition to a normalized dihedral score. Passing the amide_deviations and amide_penalties will 
output the amide deviations and penalties on a per-amide basis.  

bcl.exe molecule:Reorder \ 

-input_filenames ../outputs/DRD3-

5.training_molecules.unique_configs.labeled.sdf.gz \ 

-output \ 

../DRD3-5.training_molecules.unique_configs.sorted.bottom_10.sdf.gz \ 

-sort DRD3_Activity_uM \ 

-reverse \ 

-output_max 10 

bcl.exe molecule:Reorder \ 

-input_filenames ../outputs/DRD3- 

5.training_molecules.unique_configs.labeled.sdf.gz \ 

-output ../DRD3-\ 

5.training_molecules.unique_configs.sorted.bottom_10.explicit_aro.sdf.gz \ 

-sort DRD3_Activity_uM \ 

-reverse \ 

-output_max 10 \ 

-explicit_aromaticity 



For example, compute all of the described metrics on osimertinib, a third-generation covalent tyrosine kinase 
inhibitor (TKI). 
 

 
In both the dihedral and amide score output files, the torsions are identified by the atom indices contributing to 
the central bond of the torsion.  
 

 
Figure 1. 3D conformation of the third-generation EGFR tyrosine kinase inhibitor osimertinib. Atoms labels are given as 0-indexed 
atom numbers. Dihedral and amide scores output from molecule:Coordinates reference the central bond of the torsion. For 

example, the dihedral angle of the amide bond in the acrylamide warhead is defined by the torsion of atom indices 2-0-15-16, but in the 
molecule:Coordinates output it would be indicated by atoms 0 and 15. 

 
We can compare these scores to the scores of a conformer with a horrible amide bond (which I perturbed 
manually): 
 

 
Figure 2. Comparison of acrylamide warhead geometries. (A) Osimertinib with a good acrylamide warhead geometry. The amide 
deviation from planarity is 3.95 degrees, resulting in no ConfScore penalty. (B) Osimertinib with a bad acrylamide warhead geometry. 
The amide deviation from planarity is 71.87 degrees, resulting in a ConfScore penalty of 53.17.  

 
Note that the clean osimertinib structure has an amide deviation of approximately 4 degrees and no penalty. 
The functional form for the amide penalty is <math>. The amide deviation of the bad osimertinib structure is 

 bcl.exe molecule:Coordinates \ 

-input_filenames osimertinib.clean.sdf.gz \ 

-statistics \ 

-dihedral_scores \ 

-amide_deviations \ 

-amide_penalties \ 

-clash_scores \ 

-explicit_aromaticity \ 

-output ../outputs/osimertinib.clean 



approximately 71 degrees, and the penalty is very large (53, which is gigantic in ConfScore units; see 
Mendenhall et al. 20204 for details). 
 
As you can see, molecule:Coordinates is useful for identifying regions of strain in 3D conformers. It is 
also useful when comparing conformation sampling algorithms to one another, to different crystal structures, 
and/or to molecular dynamics (MD) trajectory ensembles.  
 
This concludes Part 2 on molecule processing. Let’s keep going!  



Part 3. Creating chemical fragments 
 
The BCL application molecule:Split gives researchers a tool to derive fragments from starting small 

molecules to aid in pharmacophore modeling, fragment-based drug discovery, and de novo drug design. There 
are many different types of fragments molecule:Split is able generate from whole molecule(s). For a 

complete list, check out the help menu options: 
 

 
The splits displayed in BCL v4.2 via the help menu are the same as those shown in section 2.5 of Brown et al. 
20221.  
 
In the previous section, we computed statistics for the third generation TKI osimertinib. Here, let’s derive the 
Murcko scaffold from osimertinib: 
 

 
Alternatively, we could remove the Murcko scaffold and return the other components: 
 

 
I frequently use the molecule:Split application to remove substructures from molecules. For example, 

start by splitting osimertinib into its rigid components.  
 

 
Let’s focus on the indole ring, which is the third fragment in the file. Grab just the indole from the previous 
output file. 
 

 
Then split the original molecule by largest common substructure using the indole ring as a reference. Set the 
splitter to return the complement, or inverse, of the largest common substructure. 
 

bcl.exe molecule:Split --help 

bcl.exe molecule:Split \ 

-input_filenames osimertinib.clean.sdf.gz \ 

-output ../outputs/osi.murcko.sdf.gz -implementation Scaffolds 

bcl.exe molecule:Split \ 

-input_filenames osimertinib.clean.sdf.gz \ 

-output ../outputs/osi.inverse_scaffold.sdf.gz -implementation 

InverseScaffold 

bcl.exe molecule:Split \ 

-implementation Rings \ 

-input_filenames osimertinib.clean.sdf.gz \ 

-output ../outputs/osi.Rings.sdf.gz \ 

-remove_h 

bcl.exe molecule:Filter \ 

-input_filenames ../outputs/osi.Rings.sdf.gz \ 

-input_start 2 -input_max 1 \ 

-output_matched ../outputs/osi.indole.sdf.gz 



 
On visualization, you should see that you now have an osimertinib structure that is missing the indole ring. If 
you were redesigning osimertinib, it may be useful to remove the indole ring and sample alternative ring 
structures in that position without perturbing the coordinates of the remainder of the molecule. This is one way 
to generate the initial scaffold. 
 
A note on substructure comparisons – the BCL encodes molecules as graphs where the edges are bonds, and 
the atoms are nodes. Edges and nodes are labeled with comparison types. Comparison types are the level of 
detail with which to describe edges and nodes. For any substructure-based comparison between two or more 
molecules, some combination of atom and bond comparison types is required. The default combination differs 
between tasks. In this example, our atom comparison occurs at the level of ElementType and our bond 

comparison at the level of BondOrderOrAromaticWithRingness. To see a list of options and the default 
for this application, you can run the following: 
 

 
For example, if atom type resolution occurs at AtomType, then an SP3 carbon would match another SP3 
carbon but not an SP2. If the resolution is lowered to ElementType, then all carbon atoms can match one 

another independent of their orbital configuration. Similarly, bond type resolutions of BondOrder and 
BondOrderOrAromatic will yield different substructure matches – the first case will be sensitive to 
differences in Kekulization, while the latter case will recognize aromatic systems and compare them accordingly.  

bcl.exe molecule:Split -implementation "LargestCommonSubstructure(\ 

file=../outputs/osi.indole.sdf.gz,\ 

atom_comparison=ElementType,\ 

bond_comparison=BondOrderOrAromaticWithRingness,complement=1)" \ 

-input_filenames osimertinib.clean.sdf.gz \ 

-output ../outputs/osi.sans_indole.sdf.gz 

bcl.exe molecule:Split -implementation "LargestCommonSubstructure(help)" 



Part 4. Generating small molecule conformations 
 
The BCL small molecule conformer generator, also known as BCL::Conf, has undergone several rounds of 
improvements4,7. Its functionality is extensively described in Mendenhall et al. 20204 and again reviewed in 
Brown et al. 20221. Therefore, here we will forego discussing the details of the algorithm and focus instead on 
frequent use-cases. 
 
Small molecule 3D conformer generation is an important aspect of both ligand- and structure-based computer-
aided drug discovery. We rarely know the functionally relevant conformation of a molecule at the outset of a 
modeling project. Generating discrete conformers is useful for tasks such as protein-ligand docking, small 
molecule flexible alignment, pharmacophore modeling, non-canonical amino acid rapid rotamer generation, 
etc.  
 
Briefly, BCL::Conf utilizes a fragment-based rotamer library derived from the crystallography open database 
(COD) to combine rotamers consisting of one or more dihedral angles according to a statistically derived energy. 
Clashes are dynamically resolved by iteratively identifying clashed atom pairs and rotating the central-most 
bonds between them without changing dihedral bins. In this way, conformational ensembles are stochastically 
generated according to likely rotamer combinations from the COD.  
 
Perhaps more important for this collection of tutorials, BCL::Conf is a critical component of the BCL and BCL-
Rosetta drug discovery pipeline. We need a way to rapidly sample 3D conformers when we perturb the 
chemical structures of molecules. Thus, while BCL::Conf is a very useful tool by itself, in combination with the 
graph-based substructure comparison methods, it forms the backbone of the structure-based drug discovery 
tools in the BCL-Rosetta integration that we will be using in Tutorials 5 – 7.  
 
BCL::Conf generates 3D conformers of small molecules either from scratch or starting from input coordinates. It 
can be used to sample a conformational ensemble of the entire protein, or it can be restricted to sample only 
allowed dihedral angles. Let’s give it a whirl. 
 
Subsection 4A – Global conformational ensembles 
 
Start by generating conformers of osimertinib with simple settings. 
 

 
There is a one-time setup cost for 2-3 seconds to load the rotamer library into memory, so if you are performing 
conformer generation on multiple molecules you can avoid repeating this cost by including them all in the some 
run. Feel free to visualize your conformers in PyMOL. 
 
See the help options for command-line flag details: 
 

 
Briefly, it is worth mentioning that ensemble_filenames is equivalent in functionality to 

input_filenames in most other applications. The conformers_single_file argument outputs all 
conformers to a single file. The other option is conformers_separate_files, which if multiple 

bcl.exe molecule:ConformerGenerator \ 

-ensemble_filenames -osimertinib.clean.sdf.gz \ 

-conformers_single_file ../outputs/osimertinib.quick_confs.sdf.gz \ 

-max_iterations 500 \ 

-top_models 50 

bcl.exe molecule:ConformerGenerator --help 



molecules are input to ensemble_filenames will output a unique SDF for the conformational ensembles 
of each of the input molecules. The returned conformers are sorted by score, with the best conformers (lower 
ConfScore) first. The number of iterations and maximum number of final conformers can be specified with the 
max_iterations and top_models flags, respectively.  
 
During the conformer generation process, it is often beneficial to take the best scoring conformer of a particular 
cluster to assemble the final ensemble. This is performed via leader-follower clustering automatically in 
BCL::Conf unless it is disabled with the skip_cluster flag. We typically recommend comparing 
conformations using the SymmetryRMSD metric at a tolerance of 0.25 Å (all RMSD-based metrics are in Å, all 
dihedral-based metrics are in degrees). By default, the tolerance is adjusted automatically to yield the desired 
number of clusters to best represent conformational space; however, a user-provided tolerance is treated as a 
minimal acceptable difference between clusters. 
 
See Mendenhall et al. 2020 for a detail performance evaluation of BCL::Conf with different settings4. More 
iterations yield better performance, at a cost of an almost-linear increase in time per conformation when 
clustering is used . If conformation_comparer is set to any metric with a tolerance of 0, then no filtering 
or clustering is applied. This will cause BCL::Conf to perform max_iterations conformer generation 

iterations, randomly select top_models conformers, sort them from best to worst by score, and return them. 
This option is the fastest, and the ensemble returned is sampled by ConfScore without bias from clusteirng.  
 
Generate conformers using two of the described protocols. First, run 
 

 
Then,  
 

 
Visualize the two ensembles together in PyMOL. You should see that the 25 conformers generated with 
clustering enabled and the SymmetryRMSD comparer occupy the densest parts of conformational space 
sampled by the unbiased method with 10x as many conformers.  
 

bcl.exe molecule:ConformerGenerator \ 

-add_h –neutralize -ensemble_filenames osimertinib.clean.sdf.gz \ 

-conformers_single_file \ 

../outputs/osimertinib.symrmsd_cluster.confs.sdf.gz \ 

-max_iterations 2000 –top_models 25 \ 

-conformation_comparer SymmetryRMSD 0.25 

bcl.exe molecule:ConformerGenerator \ 

-add_h –neutralize -ensemble_filenames osimertinib.clean.sdf.gz \ 

-conformers_single_file ../outputs/osimertinib.raw.confs.sdf.gz \ 

-max_iterations 2000 –top_models 250 –skip_clustering \ 

-conformation_comparer RMSD 0.0 



 
Figure 3. BCL::Conf run with clustering samples densest regions of unbiased conformer sampling simulation. The 250 conformers 
generated without clustering are depicted as the green point-density cloud. The 25 conformers generated with clustering are depicted as 
white sticks. Despite generating 10x fewer conformers than the unbiased sampling approach, BCL::Conf with leader-follower clustering 
fills most of the sampled space well. 

 
Subsection 4B – Local conformational ensembles 
 
Local sampling was implemented in the recent algorithmic improvements to BCL::Conf . The goal was to provide 
a mechanism for pose refinement in the setting where pre-generated discrete rotamers are used for flexibility.  
 
Local sampling in the BCL is accomplished by restricting the rotamer search in any of three ways: 
1. Dihedral bins – restricts search to the input conformer dihedral bins 
2. Bond lengths and angles – restricts search to the input conformer bond lengths and angles 
3. Rings – restricts search to the input conformer ring conformations 
 
These options are not mutually exclusive. Depending on how they are combined, different levels of sampling 
can be achieved. Moreover, they can be used in combination with any of the other options (e.g., conformation 
comparison type, clustering) described above. The flags that control each of these behaviors are 
skip_rotamer_dihedral_sampling, skip_bond_angle_sampling, skip_ring_sampling, 

and skip_clustering. 
 
I will leave it to the reader as an exercise to try generating conformers with the different combinations 
described above.  
 
Subsection 4C – Conformational sampling of substructures 
 
One may wish to only sample conformations of part of a molecule. In docking it may be the case that the core 
scaffold pose may be known with a high degree of confidence from co-crystallized structures of similar 
compounds. In such cases, you may want to allow conformational sampling of unique dihedrals. Another 
scenario is one in which you wish to refine a crystal structure of a protein-ligand complex because of low or 
missing density in part of the bound ligand. 
 
The way that this is accomplished in the BCL is by assigning the MDL property label “SampleByParts” to the 
molecule(s) of interest. SampleByParts is a list of 0-indexed atom indices for the atoms in dihedrals that are 
allowed to be sampled by molecule:ConformerGenerator.  
 



Let’s follow the example in Brown et al. 20201 and sample conformations of just the ethyldimethylamine 
substituent of osimertinib. We will sample alternative conformations of the ethyldimethylamine substituent 
than that which is proposed in the reported soaked crystal structure, PDB ID 4ZAU, because the original 
structure lacked density in this region8. First, add the corresponding atom indices to the osimertinib input file. 
 

 
We have not yet used molecule:Properties. This application will be discussed in more detail in the next 

tutorial. Also note that if you have many molecules for which you want to assign SampleByParts atom indices 
and you do not want to have to manually identify the relevant indices, you can also use the 
molecule:SetSampleByPartsAtoms application. This application sets SampleByParts indices based on 

comparison to user-supplied substructures.  
 
Next, generate global conformers as previously described: 
 

 
Visualize the output ensemble. Are the results what you expected? The only dihedrals that are sampled are 
those that contain the SampleByParts atoms. In this case, only dihedrals containing strictly the 
ethyldimethylamine atoms are sampled. SampleByParts can also be used in conjunction with the local sampling 
methods described above.  

bcl.exe molecule:Properties \ 

-input_filenames osimertinib.clean.sdf.gz \ 

–output ../outputs/osimertinib.sample_by_parts.sdf \ 

-add “Define(SampleByParts=Constant(3,36,18,19,6,20,21))” SampleByParts 

bcl.exe molecule:ConformerGenerator \ 

-ensemble_filenames ../outputs/osimertinib.sample_by_parts.sdf.gz \ 

-conformers_single_file \ 

.../outputs/osimertinib.sample_by_parts.confs.sdf.gz \ 

-max_iterations 1000 -top_models 100 



Part 5: Small molecule comparisons and alignment 
 
This next section deals with molecular comparison and alignment. Very often we are looking to compare the 
substructure- or property-based similarity of two or more molecules. It is not uncommon that we want to take 
that comparison a step further and attempt to superimpose two or more molecules such that the similar parts 
of the molecules overlap in space. This is the basis of 3D pharmacophore modeling and finds much utility 
elsewhere as well. 
 
In Part 4 Subsection 4A, you may have noticed that the global conformational ensemble is output with all 
conformers superimposed on a single rigid substructure component, but in the figure with the point cloud the 
conformers are aligned along a common axis instead. I skipped a step that I used to generate that figure: 
alignment. 
 
Small molecule alignment is an important component of multiple aspects of drug discovery; practically any time 
the real space coordinates of a small molecule or its relative coordinate position to another molecule are of 
importance, some form of alignment can be used to help you with your task. 
 
Alignment can generally be decomposed into two components: (A) sampling, and (B) scoring. Scoring (B) can be 
conceptualized in two parts: (1) defining what specifically will be compared between the molecules, and (2) 
defining the metric with which similarity will be measured. In the BCL, this is accomplished primarily through 
use of the molecule:Compare application. 
 

 
Note that the syntax is slightly different than some other applications. This syntax uses parameters, which are 
sequence-dependent arguments, instead of flagged arguments. If a single SDF is specified as a parameter, then 
the molecules are compared in a pairwise manner. If two SDFs are specified as parameters, then the 
molecule(s) in the second file will be compared against the molecule(s) in the first file.  
 
Finally, something else we have not discussed so far is the use of multiple threads. Most BCL applications 
support multiple threads at least for loading in molecules from the command-line. it is worth noting that 
molecule:Compare is notable in that the calculations performed with it benefit substantially from multiple 
threads. 
 
Not all similarity comparisons occur at the structural/substructural level. Several comparison metrics in the BCL 
occur between properties computed at the whole molecular, substructural, or atomic level. Further, distance-
based comparisons between molecules that are constitutionally identical can also be made. 
 
All right! With all of that in mind, let’s walk through an example how you might consider analyzing molecular 
similarity and performing alignments. For this example, we will revisit our DRD3 antagonists.  
First we will perform a maximum common substructure similarity comparison of our molecule of interest, 
which is a DRD3 antagonist from our training set, to our small set of ~200 molecules that appear in both the 
DRD3 and DRD5 datasets. This is a pure comparison that does not include or require alignment: 
 

bcl.exe molecule:Compare \ 

<mandatory_parameter_one.sdf> <optional_parameter_two.sdf> \ 

–output <mandatory_output.file> 



 
For a brief overview of Tanimoto similarity in substructure comparisons, see Brown et al. 20201. 
The following bash line will convert the output text file into a two-column CSV file where the first column is the 
0-indexed position of each molecule in the SD file and the second column is the similarity: 
 

 
Next we will map those similarity scores back to the ensemble of molecules we are comparing to our chosen 
antagonist. For this task we will use molecule:Properties; however, since we have not covered 

molecule:Properties in detail, I have written a small wrapper script to do it for us: 

 

 
We now have a new output ensemble that contains the MDL property “MCS_TANI”, which is how we have 
saved the similarity score to the molecules. Let’s grab any molecules from that subset that have greater than or 
equal to 10x higher activity on DRD3 than DRD5 and which have an MCS_TANI of at least 0.25. 
 

 
And convenient for ease, only one molecule passes those criteria. Let’s perform a substructure-based alignment 
of that molecule to our originally chosen inhibitor: 
 

 
The application molecule:AlignToScaffold is deterministic – it matches common substructure atoms 
to minimize the overall RMSD between matched atom pairs. 
 

bcl.exe molecule:Compare \ 

DRD3.sample_inhibitor.sdf.gz ../outputs/DRD3-

5.training_molecules.unique_configs.sorted.sdf.gz \ 

-output ../outputs/DRD3.sample_inhibitor.mcs_tanimoto.txt \ 

-method "LargestCommonSubstructureTanimoto" \ 

-scheduler PThread 8 

tail -n+3 ../outputs/DRD3.sample_inhibitor.mcs_tanimoto.txt | \ 

awk '{print NR-1,$1}' | tr ' ' ',' > \ 

../outputs/DRD3.sample_inhibitor.mcs_tanimoto.csv 

bash ../scripts/AddMappedProperties.sh bcl.exe \ 

../outputs/DRD3-5.training_molecules.unique_configs.sorted.sdf.gz \ 

../outputs/DRD3-5.training_molecules.unique_configs.sorted.mcs_tani.sdf.gz\ 

 ../outputs/DRD3.sample_inhibitor.mcs_tanimoto.csv \ 

MCS_TANI 

bcl.exe molecule:Filter \ 

-input_filenames ../outputs/DRD3- 

5.training_molecules.unique_configs.sorted.mcs_tani.sdf.gz \ 

-compare_property_values \ 

"Divide(lhs=DRD3_Activity_uM,rhs=DRD5_Activity_uM)" greater_equal 10.0 \ 

MCS_TANI greater_equal 0.25 \ 

-output_matched ../outputs/DRD3.mcs_tani_match.sdf.gz \ 

-add_h -neutralize 

bcl.exe molecule:AlignToScaffold \ 

DRD3.sample_inhibitor.sdf.gz \ 

../outputs/DRD3.mcs_tani_match.sdf.gz \ 

../outputs/DRD3.mcs_tani_match.ats.sdf.gz 



 
Figure 4. Rigid conformer substructure-based alignment. 

 
This alignment is surprisingly good considering we did not sample any conformers. If we want to incorporate 
flexibility into the alignment, we can generate conformers with BCL::Conf, align each conformer with 
molecule:AlignToScaffold, and select the best alignment using some type of score. For example, we 
could use the property-based alignment score we developed for BCL::MolAlign5 even if we choose to do a 
substructure-based sampling method.  
 
Nevertheless, this is a few steps to do from the command-line. We have an in-development application 
(consider it in alpha testing) that will eventually be a one-stop-shop for various alignment procedures. It can 
perform exactly the procedure I described, so let’s give it a whirl: 
 

 
And here is our result: 
 

 
Figure 5. Flexible conformer substructure-based alignment. 

 
This is chemically satisfying because this time the core of the molecule is preserved but we have better 
orientation of the carbonyl oxygen atoms and the chlorine atoms.  
 
The sampling procedure used in the maximum common substructure-based methods does not consider 
chemical properties of the atoms, just the mapping identified during the graph comparison. As an alternative 
approach, we can ignore substructure comparisons and perturb our molecules based on chemical properties. In 
the BCL, we do this by attempting to minimize the property-distance between two molecules using a Monte 
Carlo – Metropolis search procedure -  the algorithm is called BCL::MolAlign and it is under the PsiFlexField 
method of molecule:Compare.  
 

bcl.exe cheminfo:MoleculeFit \ 

-input_filenames ../outputs/DRD3.mcs_tani_match.ats.sdf.gz \ 

-output_filename ../outputs/DRD3.mcs_tani_match.fit.sdf \ 

-scaffold_fragments DRD3.sample_inhibitor.h.sdf.gz \ 

-routine 2 \ 

-sample_confs \ 

"(conformation_comparer=SymmetryRMSD,\ 

tolerance=0.125,generate_3D=0,cluster=true,\ 

max_iterations=2000,max_conformations=1000,change_chirality=0)" \ 

-add_h \ 

-refine_alignment \ 

-bond_comparison_type BondOrderAmideOrAromaticWithRingness 



 
This will take 4-5 minutes to run on molecules of this size – the MCM sampling procedure is slow to converge, 
and we will use many conformers. Note that the scoring used in this approach is identical to the scoring in the 
previous alignment, thus the two algorithms differ only in their sampling approach. Future development of 
cheminfo:MoleculeFit will allow semi-customizable sampling procedures to be specified on-the-fly. 

 

 
Figure 6. Flexible conformer property-based alignment. 

 
How does your output compare to the previous method? What are similarities in pose? What are differences? 
Consider aligning a molecule with less selectivity toward DRD3 (i.e., filter such that the activity ratios are near 
1). Come up with a hypothesis regarding the determinants of DRD3 selectivity vs. DRD5. 
 
 
 
 
Congratulations! You have finished Tutorial 1. For additional materials related to the topics in this tutorial, 
check out the references.  
  

bcl.exe molecule:Compare \ 

./outputs/DRD3.mcs_tani_match.sdf.gz DRD3.sample_inhibitor.h.sdf.gz \ 

-output ../outputs/DRD3.mcs_tani_match.mol_align.txt \ 

-method \ 

"PsiFlexField(\ 

output_aligned_mol_a=../outputs/DRD3.mcs_tani_match.mol_align,\ 

number_flexible_trajectories=1, 

number_outputs=5,number_rigid_trajectories=1, \ 

conformer_pairs=500, 

sample_conformers=(conformation_comparer=SymmetryRMSD,\ 

tolerance=0.25,generate_3D=0,cluster=true,max_iterations=8000,\ 

max_conformations=500,change_chirality=0))" \ 

-add_h \ 

-neutralize 
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