
Tutorial 3: Quantitative structure-activity/property relationship (QSAR/QSPR) modeling and analysis
Author: Benjamin P. Brown (benjamin.p.brown17@gmail.com)
Author: Jeffrey Mendenhall (jeffreymendenhall@gmail.com)
Date: 01-2022

In this tutorial we will cover one of the most fundamental and important components of small molecule
cheminformatics – QSAR (and QSPR) modeling. Traditionally, QSAR is a ligand-based method. The premise is
that we can predict a property of a small molecule (e.g., bioactivity in the case of QSAR or solubility in the case
of QSPR) by training an algorithm to mathematically relate various chemical properties of many molecules to
the property of interest. Thus, these methods typically make use of aggregated data from many small molecules
for which we have experimental information on the property of interest.

In the previous tutorial we covered how to compute properties, combine properties in custom definitions, and
generate feature datasets composed of molecular properties. Here, we will use those datasets to generate
models to generate QSAR and QSPR models.

The syntax for applications relating to model training and validation has been described in a preprint that we
will distribute with the workshop materials1. At the time of writing, the Brown et al. reference manuscript1 is
in revision for publication. To shorten the length of this tutorial and focus on important concepts rather than
syntax, we will be referencing sections of this manuscript as supplementary material throughout. All the
necessary command-lines to complete the tutorial with the provided files will still be given.

Once again, set the path to your BCL directory as an environment variable. For example, the main BCL directory

for these tutorials in the Meiler Lab is in /sb/apps/bcl/bcl. In bash, we can set this as an environment

variable by doing the following:

In tcsh, this is accomplished with a similar command:

We can also add the BCL executable to our PATH environment variable.

Note that the “bcl.exe” is interchangeable with “bcl-apps-static.exe” in
${BCL}/build/linux64_release/bin

export BCL=/sb/apps/bcl/bcl

setenv BCL “/sb/apps/bcl/bcl”

export PATH=/sb/apps/bcl/bcl/build/linux64_release/bin:$PATH

mailto:benjamin.p.brown17@gmail.com
mailto:jeffreymendenhall@gmail.com

Part 1. Single-task classification QSAR models for the potassium ion channel Kir2.1

For the first part of the tutorial, we will build shallow (single hidden layer) fully connected feed forward artificial
neural network to classify candidate molecules as either inhibitory (active) or not (inactive) for the Kir2.1
inward rectifier potassium ion channel. This example is an excerpt from a larger benchmark previously
published by the Meiler Lab in Butkiewicz et al.2. Here, we expand this sample case to demonstrate
performance on several core concepts in QSAR modeling.

This section assumes familiarity with the BCL descriptor framework and molecule processing / handling in the
BCL. If you need a refresher, please check out Tutorials 1 and 2. See section 7 in Brown et al.1 for an overview of
the model application group in the BCL.

The file we will start with is “1843_combined.labeled.sdf.gz”. This compressed SDF contains both the active and
inactive molecules required for training our QSAR model. For details on how the dataset was assembled, please
see Butkiewicz et al.2. The molecules are already labeled with a classification result label “IsActive” based on
the criteria from Butkiewicz et al.2.

Create a dataset using the 1315 features described in Mendenhall & Meiler, 20163.

Randomize the rows (molecules) of the dataset (note that we could have done that in the previous step as well,
but then we would have been limited to using one thread.

Once the randomized dataset is prepared, we can train our model. Section 7.1 in Brown et al. (CITATION)
reviews the syntax required to use model:Train. There exists a convenient Python wrapper script included in the
BCL that simplifies cross-validation and (if desired) feature selection. This script is described in section 7.2 of
Brown et al. (CITATION) and we will make use of it here.

Briefly, this command prepares and launches a random-split cross-validation exercise with model:Train. The
training data are from the randomized .bin file we created a moment ago. We have an ID on the output
directories that reflects our dataset numeric ID (1843), the feature set we used
(MendenhallMeiler2015.Minimal), and some details about our model (1x32_005_025). The job is submitted
locally and sent to the background. If you are a member of the Meiler Lab, you can also SSH into the CSB cluster

bcl.exe descriptor:GenerateDataset \

-source "SdfFile(1843_combined.labeled.sdf.gz)" \

-feature_labels MendenhallMeiler2015.Minimal.object \

-result_labels “Combine(IsActive)” \

-output 1843_combined.labeled.MendenhallMeiler2015.Minimal.bin \

-scheduler PThread 4

bcl.exe descriptor:GenerateDataset \

-source \ "Randomize(Subset(\

filename=1843_combined.labeled.MendenhallMeiler2015.Minimal.bin))" \

-output 1843_combined.labeled.MendenhallMeiler2015.Minimal.rand.bin

$BCL/scripts/machine_learning/launch.py \

-t cross_validation --config-file config.ini \

-d 1843_combined.labeled.MendenhallMeiler2015.Minimal.rand.bin \

--id 1843_combined.labeled.MendenhallMeiler2015.Minimal.1x32_005_025 \

--local --just-submit

and pass --slurm instead of --local and the launch.py script will submit your jobs to the cluster. The launch.py
script currently supports local, GNU parallels, SLURM, and PBS submission types.

Most of the important options are specified in the “config.ini” file passed via --config-file. Importantly, flags
passed to the terminal command-line override config-file settings. We will review a few important sections of
the config-file below:

The objective function that we will use to evaluate model performance is a receiver-operating characteristic
(ROC) curve AUC (area under the curve). We will log-scale the x-axis to measure early enrichment (the true
positive rate as a function of false positive rate between 0.001 and 0.1), referred to as logAUC.

Figure 1. Graphical illustration of the logAUC objective function.

Our QSAR model will be a neural network (ANN). Our ANN will have a single hidden layer with 32 neurons.
Over-training will be prevented by using dropout fraction of 0.05 and 0.25 on the input and hidden layers,
respectively. The use of dropout in a single-result classification task allows us to oversample the minor class,
which in this case is the active set (172 actives vs. 301321 inactives). We will resample the active molecules
until we achieve a ratio of 1/10 active-to-inactive. Training will proceed for 50 iterations. Our monitoring and
independent sets are the same sets (we will not be terminating the training early based on monitor set
performance anyway).

[variables]

objective-function: 'AucRocCurve(cutoff=0.5,parity=1,x_axis_log=1,min

fpr=0.001,max fpr=0.1)'

[learning]

learning-method: 'NeuralNetwork(transfer function = Sigmoid, weight update

= Simple(alpha=0.5,eta=0.01),dropout(0.05,0.25),objective function =

%(objective-function)s,scaling=AveStd,steps per update=1,hidden

architecture(32),balance=True,balance target ratio=0.1,shuffle=True,input

dropout type=Zero)'

max-iterations: 50

monitor-independent-set:

We will make 5 chunks for cross-validation. Each round of cross-validation will create one model. For more
details, see section 7 from Brown et al.1.

Observe that there are now three new directories in the directory where we launched the mode: (1)
log_files, (2) results, (3) models. Within each of those three directories is a sub-directory
corresponding to the ID we passed at launch. At the end of the run, the BCL computes several statistics related
to model performance and validation. ROC curves are also plotted automatically with gnuplot.

Let’s visualize the graphics in the results/

1843_combined.labeled.MendenhallMeiler2015.Minimal.1x32_005_025/ directory.

Figure 2. AUC and locAUC curves from the 5x cross-validation 1843 model training. Standard AUC is displayed on the left and logAUC is
displayed on the right. This is a representative example of the standard automatically generated output from BCL QSAR model training.

Our ROC curve has an AUC of 0.85 (no signal yields 0.5) and a logAUC of 0.44 (no signal yields 0.0215), both of
which are encouraging. We can also see some familiar trends, such as the reduction in PPV as FPR increases.

So how do we actually use the output from our model to make an informed estimate on the likely activity of a
candidate molecule? Naturally, we want to maximize our true positive and true negative predictions and
minimize our false positive and false negative predictions. One strategy would be to determine a cutoff value
(i.e., an output value from the ANN that we treat as a threshold at or above which a molecule is considered
active and below which a molecule is considered inactive) that maximizes a statistical metric, such as accuracy,
F-score, or Matthew’s correlation coefficient (MCC). Instead, however, we will use a metric that we refer to as
localPPV.

The localPPV metric estimated at a given cutoff value is an estimate of the PPV at a singular model output
value. In contrast, given positive parity (i.e., more positive model output values correspond to more positive

[cv]

monitoring-id-range: [0,4]

independent-id-range: [0,4]

cross-validations: 5

cv-repeats: 1

result label values), standard PPV for a given cutoff value is computed as the total number of true positives
divided by the number of predicted positives at or above the stated cutoff. In other words, localPPV is
constructed to be an estimate of PPV at a single discrete cutoff value instead of at or above that value.

Figure 3. Comparison of PPV and localPPV metrics in a sample mGlu5 NAM virtual screening QSAR model. The molecules on the left
are each scored with a QSAR model using the localPPV metric. The localPPV metric is an approximation of the likelihood that each
compound is active based on the model prediction output.

Thus, localPPV is a very useful metric because it can provide us with an estimated probability for our result label
for any given cutoff value (under the assumption that the actual probability varies monotonically with the
model output value). One of the plots produced at the end of our training run displays PPV and localPPV as a
function of model cutoff:

Figure 4. Prediction confidence as a function of model output value. The model output value is given on the x-axis (cutoff). This is a
representative example of the standard automatically generated output from BCL QSAR model training.

We see that as our cutoff approaches its upper limit of 1.0, our localPPV reaches a maximum value of
approximately 0.5. This means that if we use our QSAR model to predict the bioactivity of a novel compound
and the model returns a value of 0.99, then the tested compound has approximately a 50% chance of being
active. You can then determine based on the collection of independent probabilities of molecules in your
screening set how many compounds you need to order to obtain a hit.

Granted, there are caveats here. The description in the preceding paragraph assumes that the test set
compound is pulled from the same feature distribution as was used to train the model. This is almost never the
case, which is why random-split cross validation is overly optimistic. Thus, that 50% chance of being active is
really a “best case scenario” percentage. There is another form of cross-validation called “leave class out” cross-
validation that can be considered close to a worst-case scenario. In this form of validation, you cluster your
training data by the training set feature space and use distinct clusters for training and testing, such that your
feature space in the training set is separated from the feature space in your test set (for an example, see the
validation performed when we created BCL::AffinityNet for protein-ligand interaction scoring4).

Another alternative would be time-split cross-validation. In production settings, it is frequently useful to
perform different forms of validation to try and approximate the upper and lower boundaries on your
probabilities. In section 7.4.3 of Brown et al.1, we demonstrate how you can also build an applicability domain
model to help determine the validity of predictions made by a QSAR model. Unfortunately, that is beyond the
scope of the current tutorial. For additional information on model testing and validation in QSAR/QSPR, check
out section 7.3 in Brown et al.1. There is an example related to solubility prediction that may be helpful.

Moving on, let’s screen a dataset. Enamine provides free virtual screening datasets for download (you may
need a free account to download them). We will screen a small, focused Enamine library devoted to potential
ion channel scaffolds / modulators.

There are several possible commands one can run to test new molecules with our model. Once again, please
see section 7.3 in Brown et al.1 for details. Here, we will not use the model:Test application; instead, we will

use molecule:Properties to define a new property from our QSAR model prediction.

The output CSV file contains two columns: the first column are the 0-indexed indices of molecules in the input
SDF, and the second column are the localPPV values are each molecule. For readability, we will refer to former
output CSV file using pseudocode as <file>. We can sort and view the best molecule:

bcl.exe molecule:Properties \

-input_filenames

Enamine_Ion_Channel_Library_plated_36800cmds_20200524.clean.sdf.gz \

-output_table \

Enamine_Ion_Channel_Library_plated_36800cmds_20200524.clean.MendenhallMeile

r2015.Minimal.1x32_005_025.csv \

-tabulate "Define(local_ppv=PredictionInfo(\

predictor=File(\

directory=../models/1834_combined.labeled.MendenhallMeiler2015.Minimal.1x32

_005_025.rand/,\

prefix=model),\

metrics(LocalPPV)))" local_ppv \

-scheduler PThread 6

tail -n+2 <file> | sort -rgk2 -t, | head -n1

Then we can use molecule:Filter to extract the molecule that matches this index. Replace the string ID

with the number you obtain from running the previous shell command in the command-line below.

If you want to look at the top 10 best molecules by localPPV, you can make a small file that repeats “Index equal
ID” for each unique ID value:

Congratulations! You just performed a virtual screen for the Kir2.1 ion channel. Test your understanding by
trying to answer the following questions:

(1) Assuming the best-case scenario, what is the likelihood that your best predicted molecule is an active
inhibitor?

(2) Extending from (1), how many molecules would you need to order before you would be confident that
you have at least one hit?

(3) Using what you learned from Tutorials 1 and 2, identify the training set molecules that are most similar

(based on a LargestCommonSubstructureTanimoto comparison) to each of your top 10 hits. Perform a
substructure-based alignment. In what ways are the molecules similar? How are they different?

(4) Extending from (3), perform a flexible property-based alignment instead of a substructure-based
alignment. Does this change how you think about the parts of the molecules that may contribute to
their bioactivity?

(5) Which features were most salient to your model in making predictions? Don’t worry, we did not cover

this material in this material; however, the BCL provides tools to perform input sensitivity analysis. For
more details, see the reference manuscripts1,4.

bcl.exe molecule:Filter \

-input_filenames \

Enamine_Ion_Channel_Library_plated_36800cmds_20200524.clean.sdf.gz \

-compare_property_values Index equal ID \

-output_matched ID.sdf

tail -n+2 <file> | sort -rgk2 -t, | head | \

awk -F, '{print $1}' | sed "s:^:Index equal :g" | \

tr '\n' ' ' > top_hits_formatted.txt

bcl.exe molecule:Filter \

-input_filenames

Enamine_Ion_Channel_Library_plated_36800cmds_20200524.clean.sdf.gz \

-compare_property_values @top_hits_formatted.txt \

-output_matched top_10.sdf \

-any

Part 2: Multitask classification QSAR models for dopamine receptor D4 antagonists

In this section you will be training multitask classification models for dopamine receptor D4 (DRD4) orthosteric
antagonists. Multitask learning with standard feed-forward fully connected neural networks can be readily
achieved in the BCL. Around 2016, a couple important papers on multitask learning in QSAR/QSPR were
published5–7. Arguably, the most critical findings were that multitask learning only improves model
performance if the result labels of molecules with similar feature space are correlated.

Consider the following example. You have two proteins, A and B, and a training set of 10,000 molecules with
labeled data such you have 5,000 molecules labeled only for A (a5000), 3,000 molecules only labeled for B
(b3000), and 2,000 molecules that have labels for both (ab2000). Our primary task will be to predict the activity
of molecules on A. Our secondary task will be to predict the activity of molecules on B. We hope that with
multitask learning we can improve our predictions over independently training two models.

For us to benefit from multitask learning on b3000, the molecules in b3000 that are similar in feature space to
molecules in a5000 must have correlated (positively or negatively) result labels to the molecules in a5000. The
ab2000 molecules are a special case of similarity because the molecules that have activity labels for A and B are
identical. Therefore, the result labels on ab2000 must also be correlated for a training benefit. Supplementing
the primary task with additional training samples in a secondary task will reduce model performance if the
secondary task samples are similar in feature space to the primary task samples but the result labels are
uncorrelated. This is intuitive, as it essentially boils down to it being hard to train a neural network on a feature
space for which there is little relationship between the features and the result label(s).

So how do we know when there is sufficient similarity and correlation to improve our model? The manuscripts
cited above give some tips, but generally it can be challenging and requires trial-and-error. Here, we will demo
multitask training in the BCL with a simpler challenge.

It turns out that we can perform multitasking on intrinsically correlated tasks to obtain predictions at multiple
activity cutoff values without reducing performance (and, indeed, in some cases it improves performance). In
Part 1, you built a single-task model to classify a molecule as active or inactive. Ideally, we could build a
regression model that predicts the actual activity value (i.e., the output of the model is the activity itself in a
physical unit such as pKd); however, these tasks require substantial quantities of data.

Instead, we can split the difference and perform “multi-tier” classification. In this approach, we train a model
simultaneously on multiple classification labels. For example, we can say that we have three result labels:
Active_10_nM, Active_100_nM, and Active_1000_nM. These indicate the thresholds at which we consider a
molecule to be active. In this example, if you have a molecule with an activity of 50 nM, then our classification
result would be (0, 1, 1). The result labels are intrinsically correlated and the samples for all result labels are
identical. So, even if the model does not perform any better than three independent single-task models, it will
not perform worse (though I do not think anybody has thoroughly investigated this in the case where the
number of classification tasks approaches a regression-like task), and it tends to require less preparation and
training time to build one multitask model than multiple single-task models.

We have only one difference in dataset preparation if we want to do multitask learning. Create a result label
that contains multiple values.

That’s it. I have already generated the feature datasets for you, so next you just need to train the model. See if
you can write a model training command for the dataset in BCL_workusing “launch.py” as shown above

Combine(Active_10_nM, Active_100_nM, Active_1000_nM)

When the model is done training, you will see the same three plots that were automatically generated in Part 1
have been generated for each of the result labels.

(1) The DRD4 model was trained using 2000 iterations. Plot the logAUC value at each iteration for each of the
result labels. After how many iterations do we stop seeing an improvement in logAUC?
(2) With the provided training data, train multitask classification models for DRD2, DRD3, and DRD5 using the
number of iterations at which the DRD4 logAUC values plateaued. We will use these models in the next tutorial
to predict the selectivity of DRD4 antagonists that we design with multi-component reaction-based design tools
in the BCL.

Part 2 Extension (Optional): Multitasking across multiple targets

Make a new result object file containing the activity classification labels for all four proteins at the 100 nM
cutoff. Combine all the SD files for each training set using molecule:Unique.

Generate a dataset with the combined SDF. Train a neural network with the same settings that we used
previously.

What is the logAUC of DRD4 at 100 nM? Is it better or worse than in our previous multitasking classification
model? Are there any models that improved over the protein-specific models?

bcl.exe molecule:Unique \

-input_filenames *.sdf.gz \

-merge_descriptors \

-output all.labeled.unique.sdf.gz

Part 3: Building a deep neural network for pKa prediction

In this section you will be building a small deep learning model to perform pKa prediction. The goal is to
introduce you to a regression task and demonstrate additional syntax for training neural networks in the BCL. At
the end of the tutorial we will also think about how to develop an algorithm to apply our model more
effectively (i.e., instead of making the QSAR model the endpoint of an algorithm thinking about how to use it as
a component of a more complex algorithm).

This tutorial will be hands-off. Instead of walking you through the individual steps, we will outline what needs to
happen. In the input files we have provided training sets split into molecules with acidic groups and basic
groups, respectively. We have provided an object file with which to create your feature dataset. Finally, we have
provided a “config.ini” file similar to what was used in Part 2 that you can modify.

We will make two models: one for acids and one for bases. Here we go:

(1) Create a result object file similar to what we used for the single-task model in Part 1; however, make
the result label “pKa”. You will see that the property “pKa” is cached on our SD files.

(2) Generate a dataset using the provided SD files, the feature labels, and the result labels.

(3) Randomize your dataset just because it’s always good to do it (even though it is less critical for
regression models)

(4) Update your config file. We need the following:

a. An objective function for regression tasks (AUC is no longer appropriate)
b. A neural network that uses a rectified linear unit transfer function (soft-max so the bottom is at

0.05); contains 2 layers (“deep”) with 128 neurons in the first layer and 32 neurons in the
second layer; dropout of 5% on the input layer, 25% on the first input layer, and 5% on the
second hidden layer; and a learning rate (eta) of 0.25%. Hint – look at some of the commented
models that I left as templates

c. Train for 200 iterations
d. 5x cross-validation

(5) Use the launch.py script to train your models

And that is that! Analyze your model output at the end. How does it look? Any thoughts on what you might
want to change to improve the model further? Here is a sample of my output:

Figure 5. QSPR model training results from a sample pKa estimate task. Results are shown for the pKa prediction model for (A) acids
(left) and (B) bases (right).

Okay, let’s take a step back. You made a model that predicts pKa. Great. Is it actually useful? Can you run your
molecules through this neural network and actually get a meaningful result? One way to evaluate this would be
to build an applicability domain model, as mentioned in Part 2 (see Brown et al.1). For the sake of argument, we
can go with a scenario in which the feature space of your candidate screening compounds are similar enough in
feature space to your training molecules that they are considered within the domain of applicability. This is
entirely plausible depending on how the feature space is described in each model. Does this mean that the
model predicted pKa reliable?

I do not know because I have not benchmarked it; however, one primary concern might be that the training set
is composed entirely of relatively small chemical fragments and generally are limited to one protonation site.
You can use molecule:Properties statistics to collect basic information on the molecular weight,

topological polar surface area, number of hydrogen bond donors and acceptors, etc. of all the molecules in your
training set. If you were to compare that to test molecules, you may find that for the most part your mean
values do not overlap well between the datasets.

The pKa prediction is performed across the entire molecule, but it corresponds to specific acidic and/or basic
sites on a molecule. You learned in the previous tutorials about molecule:Split. We could, alternatively,
split our test molecules into smaller fragments (e.g., using the Rigid splitter) and screen each of the fragments
with our QSAR model.

Or we could split our molecules, filter out fragments without acidic or basic sites, predict the pKa of fragments
containing basic sites with our basic model, and predict the pKa of fragments containing acidic sites with our
acidic model, and then assign both values back to the original whole molecule. Going deeper down the rabbit
hole, we could follow that fragment strategy, but then also mutate acidic/basic heteroatoms into e.g., carbon or
hydrogen in our fragments. This would allow us to score each fragment in its native state and in a perturbed
state to measure the impact of each atom on the predicted pKa of the fragment. By the time we are done, we
could assign a pKa value to each acidic and basic atom. Indeed, this is highly analogous to a strategy we utilized
for per-atom contributions to the predicted difference in binding affinity of congeneric inhibitors using a deep
learning model4.

These are all strategies that we could test using the command-line applications, but it would be tedious. What
we could do instead is write a new descriptor at the C++ level. We regularly use machine learning models to
assist as components of larger algorithms in descriptors. If you are interested in programming, think about what
type of algorithm you would be interested in attempting. This is one example of a programming project that
you could contribute to the BCL. As you will see again in Tutorial 4 and again in Tutorial 7, this type of descriptor
would be very useful in both ligand-based virtual screening in the BCL and structure-based drug design in the
BCL-Rosetta interface.

Congratulations! You have completed Tutorial 3 and survived my sales pitch. Looking forward to seeing you in
Tutorial 4 on reaction-based drug design!

References

(1) Brown, B. P.; Vu, O.; Geanes, A. R.; Sandeepkumar, K.; Butkiewicz, M.; Lowe Jr, E. W.; Mueller, R.; Pape, R.;

Mendenhall, J.; Meiler, J. Introduction to the BioChemical Library (BCL): An Application-Based Open-
Source Toolkit for Integrated Cheminformatics and Machine Learning in Computer-Aided Drug Discovery.

(2) Butkiewicz, M.; Lowe, E. W.; Mueller, R.; Mendenhall, J. L.; Teixeira, P. L.; Weaver, C. D.; Meiler, J.
Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database. Molecules
2013, 18 (1), 735–756. https://doi.org/10.3390/molecules18010735.

(3) Mendenhall, J.; Meiler, J. Improving Quantitative Structure-Activity Relationship Models Using Artificial
Neural Networks Trained with Dropout. J. Comput. Aided Mol. Des. 2016, 30 (2), 177–189.
https://doi.org/10.1007/s10822-016-9895-2.

(4) Brown, B. P.; Mendenhall, J.; Geanes, A. R.; Meiler, J. General Purpose Structure-Based Drug Discovery
Neural Network Score Functions with Human-Interpretable Pharmacophore Maps. J. Chem. Inf. Model.
2021, 61 (2), 603–620. https://doi.org/10.1021/acs.jcim.0c01001.

(5) Dahl, G. E. Multi-Task Neural Networks for QSAR Predictions. arXiv preprint arXiv:1406.1231 2014.
(6) Xu, Y.; Ma, J.; Liaw, A.; Sheridan, R. P.; Svetnik, V. Demystifying Multitask Deep Neural Networks for

Quantitative Structure–Activity Relationships. J. Chem. Inf. Model. 2017, 57 (10), 2490–2504.
https://doi.org/10.1021/acs.jcim.7b00087.

(7) Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Nets as a Method for Quantitative
Structure–Activity Relationships. J. Chem. Inf. Model. 2015, 55 (2), 263–274.
https://doi.org/10.1021/ci500747n.

