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Modeling by homology is the most accurate computational method for
translating an amino acid sequence into a protein structure. Homology
modeling can be divided into two sub-problems, placing the polypeptide
backbone and adding side-chains. We present a method for rapidly pre-
dicting the conformations of protein side-chains, starting from main-
chain coordinates alone. The method involves using fewer than ten rota-
mers per residue from a backbone-dependent rotamer library and a
search to remove steric con¯icts. The method is initially tested on 299
high resolution crystal structures by rebuilding side-chains onto the ex-
perimentally determined backbone structures. A total of 77% of w1 and
66% of w1 � 2 dihedral angles are predicted within 40� of their crystal
structure values. We then tested the method on the entire database of
known structures in the Protein Data Bank. The predictive accuracy of
the algorithm was strongly correlated with the resolution of the struc-
tures. In an effort to simulate a realistic homology modeling problem,
9424 homology models were created using three different modeling strat-
egies. For prediction purposes, pairs of structures were identi®ed which
shared between 30% and 90% sequence identity. One strategy results in
82% of w1 and 72% w1 � 2 dihedral angles predicted within 40 degrees of
the target crystal structure values, suggesting that movements of the
backbone associated with this degree of sequence identity are not large
enough to disrupt the predictive ability of our method for non-native
backbones. These results compared favorably with existing methods over
a comprehensive data set.
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Introduction

High quality models of protein structures for
which we lack experimentally determined coordi-
nates are necessary for many structure-based drug
design efforts. However, solving the de novo pro-
tein folding problem for a protein sequence of in-
terest has proven very dif®cult (Defay & Cohen,
1995). Modeling target structures by homology has
been shown to be effective and useful in structure-
based drug design (for reviews see Ring & Cohen,
1993; Bamborough & Cohen, 1996), and is particu-
larly promising in light of the rapid growth of the
sequence database compared to the database of
known protein structures. In homology modeling,
Data Bank; SCWRL,
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a model for a target protein is generated based
upon the known structure of an homologous pro-
tein. Typically a model backbone is constructed for
the structurally conserved regions, loops are
added, and side-chains are placed (Browne et al.,
1969; Blundell et al., 1987; Sutcliffe et al., 1987a,b).

Our focus is the development of an algorithm
for rapidly predicting side-chain conformation for
homology modeling, where an amino acid se-
quence is built onto a protein backbone which may
or may not be the native backbone for that se-
quence. Because of the interdependence of back-
bone and side-chain conformations, it is desirable
to have a fast side-chain modeling tool that can be
used with any number of backbone models. For
example, we anticipate that this tool will be a use-
ful adjunct for loop construction, one of the more
dif®cult aspects of homology modeling. In ad-
# 1997 Academic Press Limited
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dition, predicting side-chain conformations from a
sequence and a model of a protein backbone is a
natural sub-problem of many current efforts in
protein structure prediction and determination. On
the theoretical side, these include de novo protein
structure prediction inverse folding and threading
algorithms, and protein folding simulations. In X-
ray crystallography, this method could speed the
initial placement of side-chains following the tra-
cing of the main-chain through electron density
maps prior to re®nement calculations.

The combinatorial nature of side-chain place-
ment on a given main-chain has often been cited as
the main obstacle to predicting side-chain positions
(Lee & Subbiah, 1991; Eisenmenger et al., 1993).
Historically, this has been addressed with a variety
of strategies (Summers & Karplus, 1989; Lee &
Subbiah, 1991; Tuffery et al., 1991; Desmet et al.,
1992; Holm & Sander, 1992; Levitt, 1992; David,
1993; Dunbrack & Karplus, 1993; Eisenmenger et al.,
1993; Lasters & Desmet, 1993; Wilson et al., 1993;
Koehl & Delarue, 1994; Kono & Doi, 1994;
Laughton, 1994; Hwang & Liao, 1995; Vasquez,
1995). Each effort in this ®eld includes a decision
about the conformational space each side-chain is
allowed to sample, the energy function for evaluat-
ing solutions, and the choice of moves from one
possible solution to the next; in other words, the
rotamer set, the energy function, and the search
strategy.

The observation that side-chains tend to exist in
certain energetically favored conformations, or ro-
tamers (Chandrasekaran & Ramachandran, 1970;
Sasisekharan & Ponnuswamy, 1970; 1971; Janin
et al., 1978; Bhat et al., 1979; Benedetti et al., 1983;
James & Sielecki, 1983; Ponder & Richards, 1987)
has been used effectively to reduce the search
space. Rotamer sets are usually derived from stat-
istical analysis of experimental structures and con-
sist of a list of conformations and their observed
frequencies. In most cases, these conformations
correspond to local minima on the side-chains' po-
tential energy maps (Gelin & Karplus, 1979) and
their relative probabilities correspond to what
would be predicted from conformational analysis
(Dunbrack & Karplus, 1994). Some authors use
much larger sets of conformers derived from clus-
ter analysis of the database of known structures.
These often include very rare conformations, some
of which must have very large dihedral strain ener-
gies (Schrauber et al., 1993). Some rotamer sets
have been developed which recognize a relation-
ship between the side-chain conformation and the
local backbone conformation (McGregor et al.,
1987; Dunbrack & Karplus, 1993).

For side-chain prediction, some authors have
used rotamer sets which are independent of the
local environment of the side-chain (Tuffery et al.,
1991; Holm & Sander, 1992; Koehl & Delarue,
1994), while others have used environment-depen-
dent sets (Levitt, 1992; Dunbrack & Karplus, 1993;
Eisenmenger et al., 1993; Laughton, 1994). Other
authors have augmented their set of rotamers with
other conformers which offset low energy rota-
meric w values by 10� or more (Desmet et al., 1992;
Tanimura et al., 1994; Vasquez, 1995). Lee &
Subbiah (1991) used a much broader, but still dis-
crete, set of side-chain conformations in their work
by incrementing w angles 10� at a time. Other
methods combine discrete conformers in the search
strategy with a continuous minimization in the
®nal stage of re®nement (Dunbrack & Karplus,
1993; Vasquez, 1995). Larger rotamer sets have
generally not proven more useful for side-chain
predictions than smaller sets (Holm & Sander,
1992; Laughton, 1994; Tanimura et al., 1994;
Vasquez, 1995).

The fastest energy functions focus upon very
local interactions and are typically limited to van
der Waals or hard-sphere energies (Lee & Subbiah,
1991; Holm & Sander, 1992; Koehl & Delarue,
1994; Laughton, 1994; Vasquez, 1995). More de-
tailed and longer-ranging energy functions slow
the search process, and have not shown a signi®-
cant improvement over these simple functions
(Wilson et al., 1993; Vasquez, 1996).

The different search strategies used have in-
cluded Metropolis Monte Carlo methods (Holm
& Sander, 1992), Gibbs sampling Monte Carlo
(Vasquez, 1995), genetic algorithms (Tuffery et al.,
1991), neural networks (Hwang & Liao, 1995),
simulated annealing (Lee & Subbiah, 1991; Hwang
& Liao, 1995), mean-®eld optimization (Koehl &
Delarue, 1994), the elimination of incompatible
side-chain pairs (Desmet et al., 1992; Lasters &
Desmet, 1993), and ignoring combinatorial packing
altogether (Eisenmenger et al., 1993), as well as ac-
tual combinatorial searches (Tuffery et al., 1991;
Wilson et al., 1993; Dunbrack & Karplus, 1993). In
general, methods for predicting side-chain pos-
itions seem to be limited not by the quality of
search algorithms, but rather by the quality of the
energy functions employed and the approxi-
mations introduced by various rotamer sets
(Tuffery et al., 1993; Vasquez, 1996).

The method we describe here is based on the hy-
pothesis that a great deal of the information
needed for side-chain positioning is contained in
the local main-chain conformation of each residue,
but that a search strategy to resolve steric exclu-
sions is also necessary for the most accurate predic-
tions. This approach is implemented in the
algorithm SCWRL, (side-chains with a rotamer
library), which is a single self-contained program
optimized for speed and accuracy. SCWRL is
designed to take full advantage of the rotamer
approximation and the strong backbone dependen-
cies rotamers display (Dunbrack & Karplus, 1993;
1994) to create an initial placement for each resi-
due, followed by systematic searches to resolve
steric clashes.

Most previous methods for side-chain prediction
have been tested only on side-chains built upon
their native backbone (Tuffery et al., 1991; Levitt,
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1992; Laughton, 1994; Hwang & Liao, 1995;
Vasquez, 1995). A realistic assessment of homology
modeling efforts requires a more dif®cult test for
side-chain prediction methods: placement of side-
chains onto a related polypeptide backbone that is
distinct from the native structure. This test has
been performed less frequently and is usually ap-
plied to fewer than a dozen structures (Holm &
Sander, 1992; Dunbrack & Karplus, 1993;
Eisenmenger et al., 1993; Wilson et al., 1993; Koehl
& Delarue, 1994). In contrast, we test our method
on thousands of cases for the standard self-back-
bone test, but more importantly, we also character-
ize the performance of SCWRL on a large number
of homology modeling test cases using template
backbones both with and without gaps in the se-
quence alignment. SCWRL was tested and re®ned
on a test set of 299 high resolution crystal struc-
tures, and then used to model every protein struc-
ture in the database of known structures. We then
used SCWRL to create 9424 homology models,
from available pairs of structures with similar se-
quences to test its performance as a homology
modeling tool.

Results and Discussion

Tests on self-backbones

The SCWRL algorithm is described in detail in
Methods. In brief, side-chains are placed on an ex-
perimentally derived or modeled protein backbone
using the most probable rotamers from a back-
bone-dependent rotamer library. For this purpose,
the 1996 update of the backbone-dependent rota-
mer library of Dunbrack & Karplus (1993) was
Table 1. SCWRL results for 299 high resolution

Residue %w1 %w1 � 2

type correct correct %w(2j1)

Asn 73.3 51.6 70.4
Asp 75.9 61.3 80.8
Arg 64.9 48.5 74.7
Cys 74.0
Gln 68.2 49.2 72.1
Glu 62.9 43.7 69.5
His 85.3 73.4 86.0
Ile 87.4 69.8 79.9
Leu 83.0 70.2 84.6
Lys 67.5 49.4 73.2
Met 71.7 51.1 71.3
Phe 90.4 84.1 93.0
Pro 87.0 73.0 83.9
Ser 62.1
Thr 83.2
Trp 87.4 63.1 72.2
Tyr 90.2 85.7 95.0
Val 82.8

Total 76.8 65.6 85.4

Percentage correct for the 299 protein high resolutio
predicted within 40� of the crystal structure values.
conformations within 40� of any rotamer in the backb
predictable by our method, are also shown.
used. Steric clashes are relieved systematically by a
combinatorial search of rotamers in an order de-
®ned by the rotamer library and a modi®ed van
der Waals interaction energy.

We tested the SCWRL algorithm on a set of 299
crystal structures with resolutions better than or
equal to 2.0 AÊ , R factors below 20%, sizes between
40 and 300 residues, and pairwise sequence identi-
ties less than 90%. For the 299 structures in the test
set, the mean solution time was 37.6 seconds per
structure, or 0.28 seconds per residue on a Silicon
Graphics R4400 150 MHz processor.

Predictions for side-chain dihedral angles have
traditionally been considered correct when they
are within 40� of the crystal structure angles (Sum-
mers et al., 1987; Lee & Subbiah, 1991; Dunbrack &
Karplus, 1993; Koehl & Delarue, 1994; Hwang &
Liao, 1995; Vasquez, 1995). We have followed that
convention here. Table 1 shows the results of ap-
plying SCWRL to the test set of 299 high resolution
structures, using a nine rotamer w1 and w2 back-
bone-dependent library. The conditional prob-
ability of w2 predicted correctly given a correct w1 is
also shown. SCWRL, like other methods based on
packing (Holm & Sander, 1992; Koehl & Delarue,
1994; Laughton, 1994), accurately predicts the
conformation of the aromatic residues Phe and Tyr
(w1 correct >90%). SCWRL also predicts w1 accu-
rately for the g-branched residues Leu, His, and
Trp, and the b-branched residues Val, Thr, and Ile
(w1 correct >80%), in addition to Pro. These resi-
dues exhibit strong interdependence between back-
bone and side-chain conformations. SCWRL
performs less well for Ser, and the long, un-
branched residues Met, Glu, Gln, Arg, and Lys.
structures

%w1 %w1 � 2

consistent with consistent with Number of
rotamer model rotamer model residues

96.6 96.6 2522
96.9 96.9 2808
93.8 86.4 1875
99.0 99.0 1258
93.6 89.8 1768
93.6 89.3 2599
99.3 96.2 988
98.0 94.0 2414
94.1 91.2 3650
92.4 85.2 3164
96.6 94.6 869
99.3 91.0 1803
99.9 99.7 2057
97.2 97.2 3448
98.3 98.3 3050
99.3 94.3 732
99.5 93.7 1857
97.6 97.6 3401

96.6 93.9 40263

n self-backbone test set is given for dihedral angles
The percentages of crystal structure side-chains in
one-dependent rotamer library, which are therefore
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Backbone-dependent side-chain rotamer libraries
capture the steric restrictions imposed upon w1 ro-
tamers by particular backbone conformations. As
side-chain placement algorithms all consider the
steric consequences of a particular rotamer, it is
possible that backbone-dependent libraries will
offer little advantage over their backbone-indepen-
dent counterparts. To examine this possibility, we
modeled our test set structures with three different
rotamer libraries, a backbone-independent rotamer
set, a backbone-dependent set containing three ro-
tamers per residue (w1), and a backbone-dependent
set containing up to nine rotamers per residue (w1

and w2). The results are shown in Figure 1. Marked
improvements in using a backbone-dependent li-
brary over a backbone-independent library are
shown for Ser, Val, Thr, Ile, Asp, Asn, and Pro.
The backbone-independent library performs nearly
as well as the backbone-dependent libraries for
Phe and Tyr. The resolution of steric con¯icts ap-
pears to be suf®cient for positioning these side-
chains. Providing additional choices for w2 also im-
proves the prediction of both w1 and w2 for almost
all residues. Even Cys, Val, and Thr, which have
only w1 angles, are improved when using the nine
rotamer backbone-dependent library. Presumably,
Figure 1. Comparison of different rotamer libraries for
the high-resolution 299 protein self-backbone test set.
Results for the backbone-independent library are shown
in white, the three-rotamer backbone-dependent library
in gray, and the nine-rotamer backbone-dependent
library in black. Percent correct within 40� for w1 (a) and
w1 � 2 (b) are plotted for each residue type.
this is due to improved positioning of neighboring
residues. Exceptions to this improvement are seen
for Ser, which may be too small to be affected by
steric exclusions, Pro, which is well positioned
using the backbone, and Asp and Asn, which are
both small and usually near the surface of the pro-
tein.

We were interested to see if our search method,
which moves residues away from their most favor-
able backbone-dependent rotamers, signi®cantly
affected our results. In Figure 2, we compare the
results for the three stages of the rotamer search.
The residues Ser, Cys, Val, Thr, Asp, Asn, and Pro
showed little or no improvement over the course
of the search, indicating that they were either
already well-positioned by considering their back-
bone conformation, or were too small to be af-
fected by steric con¯icts. The prediction accuracy
for the other residues improved over the course of
the rotamer search procedure. For the aromatic re-
sidues and Leu, the result was �20% more accu-
rate. These residues, which constitute a large
portion of the core of a protein structure, seem to
rely heavily on steric packing to determine their
conformation.

Side-chain conformations are determined by a
number of factors, including intrinsic confor-
mational preferences, interactions with other parts
of the protein, and interactions with solvent. We
measured the level of solvent exposure of the resi-
dues in our test set and divided them into buried
residues (<20% of their potential surface area ex-
posed) and exposed residues. Because SCWRL
does not consider interactions with solvent, and be-
cause exposed side-chains may exist in multiple
conformations, we expect the predictions for ex-
posed residues to be less accurate than those for
buried residues. The results are shown in Figure 3.
As expected, buried residues are predicted with
much greater success than exposed residues, with
signi®cant improvements shown for buried Glu,
Gln, Arg, and Lys residues.

How close are our predicted side-chain angles to
the experimentally determined values? Although
40� is a traditional cutoff for side-chain prediction
accuracy, we measured the absolute differences in
w1 from the structures predicted by SCWRL and
the crystal structures in the test set to evaluate the
magnitude of the local distortions. The results are
shown in Figure 4. For most side-chains, the pre-
dicted value of w1 is within ten degrees of the ex-
perimental value. These results also show that 40�
is a suitable cutoff for measuring side-chain predic-
tion, as this offers a clean separation between the
correct rotamer bin, and the other choices which
peak approximately 120� away. Figure 4 also illus-
trates that for many residues, there is a small but
appreciable number of side-chain conformations
recorded in crystal structures that are far from
their rotamer values. These conformations rep-
resent ``non-predictable'' residues for our method,
as they are more than 40� from any of their poten-



Figure 2. Comparison of results for the 299 protein self-
backbone test set at different stages in the search pro-
cess. Stage 1, in which the most favored backbone-
dependent rotamer is built onto the backbone with no
regard for steric con¯icts, is shown in white. Stage 2, in
which new rotamers are chosen to relieve side-chain/
main-chain con¯icts, is shown in gray. Stage 3 results,
shown in black, are for the ®nal structures after the
relief of side-chain/side-chain con¯icts by a combinator-
ial search. Percent correct within 40� for w1 (a) and w1 � 2

(b) are plotted for each residue type.

Figure 3. Effect of solvent exposure on prediction accu-
racy for the 299 protein self-backbone test set. Buried
residues, those with less than 20% of their potential sur-
face area exposed, are shown in black, exposed residues
in white, and all residues in gray. w1 (a) and w1 � 2 (b)
are plotted for each residue type.

1272 Prediction of Side-chains in Homology Modeling
tial rotamer replacements. Table 1 shows the per-
centage of the residues in our test set population
which are within 40� of any of the rotamers in the
library, and which are therefore consistent with the
rotamer model for side-chains and predictable by
our method. Examples of conformations which are
inconsistent with a rotamer model are particularly
numerous for long polar side-chains. These confor-
mations, with w1 within 20� of 0�, 120�, and ÿ120�,
for example, are unlikely to be correct, since the
strain energy involved is greater than 4 kcal/mole
(Durig & Compton, 1979; Compton et al., 1980;
Wiberg & Murcko, 1988). Some of these cases may
be due to crystallographic averaging of two rota-
mers. For example, if a residue exists in a crystal-
line state with a population of roughly half with w1

�60� and half with w1 �180�, the observed w1 may
be 120� (B. W. Matthews, personal communication).

In the course of modeling protein structures
from the entire PDB, we encountered many crystal
structures of modest resolution and structures de-
termined by NMR spectroscopy in which some
side-chain assignments are likely to be in error.
This type of error was observed by Morris et al.
(1992), who noted that several parameters indicate
the decrease in stereochemical quality of crystal
structures as resolution decreases. We were inter-
ested to ®nd a correlation between the resolution
of a crystal structure and the accuracy of our meth-
od. Table 2 shows our results for these structures,
broken down by resolution. For NMR structures,
the ®rst structure in the PDB ®le was taken to be
the reference structure. SCWRL side-chain predic-
tions are least compatible with NMR structures. In
addition, there is a clear correlation between the
resolution of a crystal structure and SCWRL's abil-
ity to predict the rotamer positions for all side-
chain types. We measured this effect more directly
by identifying pairs of crystal structures of identi-
cal proteins with differences in resolution 50.5 AÊ .
We used the higher resolution structure as the cor-
rect reference structure for side-chain positions. For
the 41 pairs of structures, in which the average
difference in resolution was 0.76 AÊ , w1 accuracy im-
proved an average of 5.4% for the high resolution
over the low resolution backbone. For the eight



Table 2. Effect of resolution on prediction accuracy for the database of known structures

Resolution
Residue 0.0 to 2.0 2.0 to 2.5 2.5 to 3.0 3.0 and up
type (AÊ ) (AÊ ) (AÊ ) (AÊ ) NMR All structures No. residues

Asn 70.8 69.4 64.7 58.4 42.1 66.7 59554
Asp 77.9 74.3 67.7 59.7 44.1 71.2 72679
Arg 66.6 64.1 59.3 52.0 49.1 61.7 56414
Cys 75.8 72.6 67.1 64.0 49.2 69.3 22240
Gln 69.1 66.1 61.2 56.3 49.2 63.9 45962
Glu 65.3 59.9 55.1 50.6 48.6 58.4 72385
His 84.0 82.7 78.2 72.8 54.9 80.0 28955
Ile 87.7 85.4 80.9 73.6 66.3 83.1 66503
Leu 84.4 79.5 74.8 69.0 62.3 77.8 104678
Lys 69.6 65.5 60.9 55.7 50.0 63.8 77316
Met 70.6 69.5 64.8 59.0 45.8 66.6 24442
Phe 91.3 89.8 87.3 83.8 71.5 88.3 49481
Pro 84.7 81.0 76.6 76.2 88.3 80.4 57098
Ser 63.6 57.3 49.6 44.9 33.7 54.8 83024
Thr 83.0 77.3 69.3 60.5 48.7 73.9 79397
Trp 90.1 86.3 83.6 74.8 59.7 84.8 19317
Tyr 89.9 89.2 85.6 80.9 65.3 86.9 45474
Val 83.8 79.1 72.9 66.2 63.4 76.9 87872

w1 total 77.7 74.1 68.7 63.3 54.3 71.8
w1 � 2 total 65.9 61.1 54.9 49.4 38.8 58.7
No. structures 1296 1345 709 245 590 4185
No. residues 243464 401292 271289 98572 38074 1052791
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pairs with differences in resolution 51.0 AÊ , the
average improvement in w1 accuracy was 13.3%. In
the cases of low resolution X-ray structures, it is
possible that SCWRL is predicting the correct rota-
mers for some positions that are incorrectly re-
ported in the experimental structures. In light of
this, SCWRL may be a useful tool for building
side-chains onto a main-chain trace in the course of
experimental structure re®nement.

Based on the observation that crystal structures
of identical proteins can contain residues in differ-
ent rotamer positions (Faber & Matthews, 1990;
Kossiakoff et al., 1992; Kishan et al., 1994), we at-
Figure 4. Absolute differences in the w1 values predicted
by SCWRL and the crystal structure values for the 299
protein self-backbone test set.
tempted to measure the amount of variability for
different residue types in proteins that had been
solved in different crystal structures. This would
put an upper limit on the accuracy that any side-
chain prediction program could hope to achieve.
We began by searching for sets of proteins with
identical sequences solved in different crystal
forms in structures with resolution better than or
equal to 2.0 AÊ . Additional structures were included
as long as they were not solved by the same inves-
tigators, in order to reduce the chance of including
structures that were re®ned using another crystal
structure for molecular replacement. Our ®nal set
of structures for this study included: hen egg white
lysozyme (PDB references 1VFB, 132L, 2LZT,
1HEW, 1LSE, 1HEL, 1LZA, 2LYM, 6LYT, 1LMA,
1LYS, 4LYT, and 5LYM) including structures in
®ve different space groups; bacteriophage T4 lyso-
zyme (177L, 178L, and 179L) in two different space
groups; and bovine pancreatic trypsin inhibitor
(4PTI, 5PTI, 6PTI, and 1BPI) in two different space
groups. Each residue position in each of these sets
was measured to determine whether the side-
chains remained in the same w1 and w1 � 2 rotamer
bins, or whether these positions varied. For
example, of the 18 Ile residues in the three sets of
structures, 14 displayed the same w1 bin values in
every structure, and ten displayed the same w1 � 2

rotamers. The results are shown in Figure 5, along
with the prediction results of SCWRL on the test
set. The variability in the crystal structure rotamers
are shown as values with 95% con®dence intervals,
derived graphically from the binomial distribution
for small sample sizes (Clopper & Pearson, 1934;
Glantz, 1992). Cys residues involved in disul®de
bonds in these structures were omitted from the
analysis and no free Cys residues were found. As



Figure 5. The results for the self-backbone test set of 299
structures (bars) are shown with the 95% con®dence
intervals for a maximum limit of prediction accuracy,
based on multiple crystal structures of identical proteins,
for w1(a), and w1 � 2(b).
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more structures are solved in multiple crystal
forms, our con®dence in these limits will improve.
However, the initial results in Figure 5 indicate
that SCWRL is working up to its theoretical limits
for most residue types, even without consideration
of hydrogen bonding, solvent effects, and electro-
static interactions.

In an effort to improve predictions for the more
problematic polar residues, we tested a hydrogen
bonding term for Ser, Asp, Asn, Met, Arg, Lys,
Glu, and Gln. For these residues, rotamers which
could potentially make a hydrogen bond with the
protein backbone up to six residues away from the
side-chain were given a higher rank than rotamers
which could not make such a hydrogen bond. In-
cluding this term did not have signi®cant effect on
the results for these residues, with changes in accu-
racy for w1 prediction of less than 1%, except for
Ser which decreased by 4%. Other variations of
our method for predicting these side-chains were
tested, including increasing the radii of the side-
chain atoms, and truncating Met, Arg, Lys, Glu,
and Gln residues at Cg or Cd. These changes also
did not improve our results (data not shown).

A limited energy minimization re®nement is
often used in homology modeling after the place-
ment of side-chains. We performed energy mini-
mizations with the program CHARMM (Brooks
et al., 1983) on our test set structures to see if a
short, constrained minimization would change our
predictive ability. Minimizations were performed
with atoms constrained with harmonic potentials
to their Cartesian coordinates. The constraints on
the side-chain atoms were reduced every 50 steps
of adopted-basis Newton Raphson minimization;
the ®nal 50 steps were performed with no con-
straints applied to the side-chain atoms (Summers
& Karplus, 1989; Dunbrack & Karplus, 1993). We
found that fewer than 2% of SCWRL-placed side-
chains changed either w1 or w2 by 40� or more, leav-
ing our scores practically unaltered (data not
shown). This may be due to our use of rotamers
close to local energy minima.

Comparison with other methods

Many algorithms have been developed to predict
side-chain conformation. To be useful, a new ap-
proach must be more accurate and/or more ef®-
cient than existing methods over a large set of test
cases. Figure 6 compares the results of SCWRL
with those from the Monte Carlo program torso
from the MAXSPROUT package of Holm & Sander
(1991), and with the results from the mean ®eld
theory algorithm described by Koehl & Delarue
(1994), on 262 structures from the test set. The re-
maining 37 structures from the test set contained
incomplete backbones, which are handled differ-
ently by the three methods and are therefore not
readily comparable. We chose to compare SCWRL
with these algorithms because they are both fast,
publicly available, and accurate. We attempted to
make this comparison as consistent as possible by
using the same test structures and evaluation cri-
teria for all three methods. Both the Holm & San-
der and Koehl & Delarue algorithms use the
backbone-independent library of Tuffery et al.
(1991). The accuracy of SCWRL and torso are com-
parable. SCWRL performs slightly better for Pro,
w1 of Asp, and w2 of Leu, which displays a strong
dependence on w1 (Dunbrack & Karplus, 1994). In
contrast, torso does much better for Met at both w1

and w2. SCWRL displays a distinct advantage over
the Koehl & Delarue algorithm for Ser, Thr, Pro,
the w1 of Asp, and the w2 of Leu. The Koehl & De-
larue algorithm, again using the Tuffery library,
shows an advantage for Met residues. The ®nal va-
lues for w1 and w1 � 2 predicted correctly for all resi-
dues are 72.6% and 60.9% for the Koehl & Delarue
algorithm, 76.7% and 64.3% for the Holm & Sander
algorithm, and 77.0% and 65.8% for SCWRL.

Many authors have used root mean squared de-
viation of side-chain atom positions as an evalu-
ation for their side-chain placement methods (Lee
& Subbiah, 1991; Tuffery et al., 1991; Holm &
Sander, 1992; Levitt, 1992; Dunbrack & Karplus,
1993; Eisenmenger et al., 1993; Wilson et al., 1993;
Koehl & Delarue, 1994; Laughton, 1994; Hwang &



Figure 6. Comparison of SCWRL results in black with
the Monte Carlo sampling algorithm of Holm & Sander
(1991) in gray and the mean-®eld algorithm of Koehl &
Delarue (1994) in white for 262 chains of the 299 protein
self-backbone test set. Percent correct within 40� for w1

(a) and w1 � 2 (b) are plotted for each residue type.

Table 3. r.m.s. deviations of side-chain atoms

Koehl & Holm
Residue Delarue Sand
type rmsd (AÊ ) rmsd

Asn 1.345 1.25
Asp 1.370 1.25
Arg 2.729 2.76
Cys 1.427 0.88
Gln 1.603 1.67
Glu 2.136 2.11
His 1.235 1.20
Ile 0.707 0.69
Leu 1.134 1.03
Lys 2.033 2.31
Met 1.697 1.55
Phe 1.043 0.98
Pro 0.435 0.48
Ser 1.471 1.07
Thr 0.853 0.68
Trp 2.110 1.75
Tyr 1.207 1.12
Val 0.508 0.53
Average rmsd
per residue 1.327 1.25

Average total rmsd
per structure 2.007 1.96

Root mean squared deviations of side-chain at
method, and the Holm & Sander (1991) method o
set. These measurements include all side-chain ato
graphically symmetrical residues (Asp, Asn, Glu, G
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Liao, 1995; Vasquez, 1995; Chung & Subbiah,
1996). We present the results for this evaluation in
Table 3, with the results for the Koehl & Delarue
and Holm & Sander algorithms. These scores in-
clude all side-chain atoms beyond Cb, which
makes them larger than scores which include Cb

(Shenkin et al., 1996), and we correct for crystallo-
graphically symmetrical side-chains (Asp, Asn,
Phe, Tyr, His). The total root mean squared devi-
ation score per structure, which has also been used
historically, is also presented in Table 3.

We would expect methods that use a backbone-
independent rotamer set, like the Koehl & Delarue
and Holm & Sander methods, to perform less well
on exposed residues than methods that use back-
bone-dependent rotamer sets, like SCWRL. Ob-
viously, a side-chain which is exposed to solvent is
not subject to the steric exclusion of as many other
side-chain and main-chain atoms from the protein.
In these cases, the local backbone conformation
may become the dominant factor in¯uencing a
side-chain's conformation. When the results from
the Koehl & Delarue and Holm & Sander methods
are divided by solvent exposure of the residues
and compared with the results from SCWRL, we
see that this expectation is borne out. Figure 7
shows these results for correct w1 predictions.
While the Holm & Sander algorithm shows an ad-
vantage for buried residues, SCWRL performs bet-
ter for exposed residues. Because exposed residues
comprise sites on a protein which interact with
other molecules, including small-molecule binding
sites, protein-protein recognition sites, and enzy-
matic active sites, the ability to predict these side-
on 262 high resolution structures

&
er SCWRL Number of
(AÊ ) rmsd (AÊ ) residues

3 1.281 2280
5 1.106 2475
0 2.835 1688
8 0.990 1140
7 1.707 1612
9 2.161 2314
2 1.154 884
7 0.804 2166
9 0.960 3272
9 2.065 2786
5 2.054 782
0 1.009 1574
5 0.504 1829
9 1.018 3127
0 0.618 2725
1 1.916 645
3 1.150 1677
7 0.631 3072

4 1.250 36048

4 1.931 262 structures

oms for SCWRL, the Koehl & Delarue (1994)
n a subset of the 299 protein self-backbone test
ms beyond Cb, and are corrected for crystallo-
ln, Phe, Tyr, His, Arg).



Figure 7. Comparison of the buried (a) and exposed (b)
w1 results for the Holm & Sander (1991) algorithm in
gray, the Koehl & Delarue (1994) algorithm in white,
with SCWRL, in black for the 299 protein self-backbone
test set. Buried residues are de®ned as having less than
20% of their potential surface area exposed.
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chain conformations more accurately is important.
The curious peak in the predictive ability of both

the Monte Carlo and mean ®eld methods for Met
led us to study the behavior of that residue with
different rotamer sets. We ®rst tested the ten back-
bone-independent rotamers for Met from the Tuff-
ery et al. (1991) library in SCWRL. Then, we tested
a full backbone-dependent library for Met which
articulated w3 as well as w1 and w2, with up to 17
rotamers per position. Neither of these rotamer
sets improved our accuracy for Met (data not
shown). Some con¯uence of the backbone-indepen-
dent rotamer set and the search algorithms for
these methods must create this increased accuracy.

Homology modeling: prediction of side-chain
conformations on non-self backbones

A level of sequence identity above 25% between
proteins often indicates a structural similarity
which can be exploited in homology modeling
(Blundell et al., 1987). This structural similarity im-
parts a ®nite amount of side-chain information to a
homology modeling effort. We tested SCWRL by
constructing homology models of two types: a set
without insertions or deletions in the sequence
alignments of the target and template proteins and
a set allowing such gaps. Table 4 shows the per-
cent w1 accuracy for a set of 1822 homology models
without gaps built by SCWRL, ®rst with no knowl-
edge of template side-chain positions (method I),
with conserved residues retaining their Cartesian
coordinates (method II), and with w1 rotamers pre-
served from the template (method III) (Summers &
Karplus, 1989; Dunbrack & Karplus, 1993). No
pairs of sequences without gaps were found for
crystal structures with percent identity between 30
and 40%. Adding the information for conserved
side-chains in methods II and III improved the re-
sults by 5 to 10% over method I. The most striking
result is that the predictive ability of SCWRL using
homology modeling method II was better than
using SCWRL on the high resolution test set, even
though the latter case uses the native backbone,
while the former relies upon a surrogate backbone
scaffold. The addition of preserved w1 bins from
the template in method III improved the results as
much as method II. A fourth method, which com-
bined the exact conformers of conserved residues
from method II and the preserved w1 bins for mu-
tated residues from method III, was tested but
showed no improvement over methods II and III
(data not shown). The ®nal values for w1 and w1 � 2

correct in the high resolution, no gaps test cases
are 73.5% and 60.2% for method I, 81.8% and
71.8% for method II, and 81.9% and 66.6% for
method III, respectively. Because the template side-
chain information is usually available during a real
homology modeling effort, the accuracy of SCWRL
supports its utility as an homology modeling tool.

Because the backbone resolution affected the
prediction accuracy for the self-backbone models
from the PDB (see Table 2), we measured the effect
of both the template resolution and the target res-
olution on the prediction accuracy for the ®rst set
of homology models (no gaps). Table 4 shows how
the prediction accuracy varies for homology
models where both the target and template struc-
tures have resolution <2.0 AÊ , and homology
models where one or both of the template and tar-
get structures have resolution >2.0 AÊ . Increased
resolution of both target and template structures
leads to increased prediction accuracy. A higher
resolution template structure provides a more ac-
curate backbone for the side-chain placement,
while higher resolution target structures provide a
more accurate description of the residues which
are to be modeled.

We constructed another set of homology models
from sequence pairs which aligned with gaps, a
situation common in homology modeling. The se-
quences from the 299 test set structures were
aligned, and those 267 pairs with greater than 30%
sequence identity were used to create 534 hom-
ology modeling tests. Insertions in the target se-
quence were deleted, and insertions in the
template structure were removed to create a
matching template structure and target sequence.



Table 4. Homology modeling results

Target and
template Sequence Identity

resolution
(AÊ ) 30±40% 40±50% 50±60% 60±70% 70±80% 80±90% 90±100% Total

No gaps >2.0 62.1 69.1 69.1 70.6 68.4 68.4
Method I No gaps <�2.0 70.3 77.1 74.8 75.7 72.0 73.5

Gaps
allowed <�2.0 61.2 63.0 60.2 68.5 70.8 70.3 72.8 64.7

No gaps >2.0 67.8 74.3 76.6 75.9 76.7 75.7
Method II No gaps <�2.0 70.0 83.1 82.5 82.8 81.4 81.8

Gaps
allowed <�2.0 64.5 66.7 65.0 74.9 79.8 81.2 81.0 69.8

No gaps >2.0 65.7 73.1 75.8 77.1 77.4 75.8
Method III No gaps <�2.0 72.7 82.4 81.9 84.2 82.1 81.9

Gaps
allowed <�2.0 63.0 65.3 64.6 74.6 79.7 81.1 81.3 68.9

No gaps >2.0 124 134 370 170 522 1320
Number of models No gaps <�2.0 12 66 186 2 236 502

Gaps
allowed <�2.0 142 152 44 82 28 34 52 534

Results for w1 accuracy are shown for three homology-modeling (non-self backbone) side-chain placement methods, as well as the
number of models built with each method. Method I uses only the template backbone and target sequence to build side-chains,
while methods II and III utilize side-chain information from the template structure to guide side-chain placement.
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Each of the 534 tests were modeled using the three
methods previously described. The results from
this study are shown in Table 4, with percent iden-
tities given as the number of conserved residues
over the aligned regions. Using alignments with
gaps generally lowers the prediction accuracy ap-
proximately 10%, but the relative effectiveness of
the different methods is retained.

Other methods for side-chain placement have
not typically been tested on homology models
(Tuffery et al., 1991; Levitt, 1992; Laughton, 1994;
Hwang & Liao, 1995; Vasquez, 1995), or have been
tested on a dozen or fewer models (Holm &
Sander, 1992 (ten models); Dunbrack & Karplus,
1993 (one model); Eisenmenger et al., 1993 (two
models); Wilson et al., 1993 (four models); Koehl &
Delarue, 1994 (12 models)). The accuracies reported
for some of these models are similar to the accu-
racy of our results, but the statistical power of our
large test sets gives us con®dence in the reproduci-
bility of our results.

Conclusions

We have developed a method for placing side-
chains onto a protein backbone which is fast, easy
to use, and more accurate than other fully auto-
mated, publicly available methods. The prediction
accuracy for this method in the test case of build-
ing side-chains onto a native backbone approaches
observed limits of accuracy for the underlying ex-
perimental data. The method also achieves a useful
prediction accuracy in a test of almost 10,000 hom-
ology models. These results indicate that SCWRL
is a potentially useful tool for real homology mod-
eling projects.

SCWRL is publicly available to academic groups
on the World Wide Web at http://www.cmphar-
m.ucsf.edu/cohen/ and by anonymous ftp at
ftp.cmpharm.ucsf.edu. The backbone-dependent
rotamer library and other information on confor-
mational analysis of protein side-chains is available
at http://www.cmpharm.ucsf.edu/ � dunbrack.

Methods

General

Protein structures were taken from the August 1996
update of the Brookhaven Protein Databank (Bernstein
et al., 1977). Computation was performed on a Silicon
Graphics R4400 150 MHz processor. The ALIGN pro-
gram from the FASTA package (Pearson & Lipman,
1988; Pearson, 1990) was used for sequence alignment.
Graphical display and measurement of structures were
performed using PSSHOW v.2.0d (Swanson, 1994).

We begin with the main-chain atoms N, Ca, C, and O
from a protein structure. For self-backbone tests, we do
not take any side-chain atoms as input. The sequence, to-
gether with the f and c angles of the backbone, are
used to look up an ordered list of rotamers for each resi-
due from a rotamer database. Each of these potential ro-
tamers is built, using bond lengths and angles from the
AMBER 4.1 parameter set (Pearlman et al., 1995), and the
set of rotamers is searched for the minimum steric clash
to create the output structure.

The energy function in SCWRL is a simple repulsive
steric clash check. For a pair of atoms, the energy of
interaction is given by:

http://www.cmpharm.ucsf.edu/cohen/
http://ftp.cmpharm.ucsf.edu.
http://www.cmpharm.ucsf.edu/~dunbrack
http://www.cmpharm.ucsf.edu/cohen/


Table 5. Radii used for steric clash checks

Atom type Radius (AÊ )

Backbone N 1.1
Backbone C-alpha 1.3
Backbone C 1.3
Backbone O 1.1
Asp, Asn OD1, OD2, ND2 0.7
Glu, Gln OE1, OE2, NE2 0.7
Lys CE 0.8
Lys NZ 0.4
Met CE 0.8
Arg NE 0.7
Arg CZ 0.8
Arg NH1, NH2 0.4
Other side-chain C and S 1.3
Other side-chain O and N 1.1

Figure 8. Plot of the energy function for steric clash
checks in SCWRL (dark line), with a standard Lennard-
Jones potential (light line). The energy function is shown
relative to ``full size'' atomic radii. SCWRL atomic radii
are reduced approximately 15%.
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where R is the distance between the atoms and R0 is the
sum of their radii. The linear portion of the function ap-
proximates the repulsive curve of a Lennard-Jones poten-
tial (see Figure 8). To make the steric term more
forgiving on the rigid rotamers, the radii of atoms are re-
duced roughly 15% from their van der Waals radii
(Schulz & Schirmer, 1979; see Table 5), to values which
approximate the distance where a Lennard-Jones poten-
tial would become repulsive. In addition, the radii of
terminal atoms of longer residues, whose positions are
determined by w3 and w4, are further reduced. This is de-
signed to lessen the impact of having ®xed w3 and w4 va-
lues in our rotamer set.

Search strategy

To overcome the combinatorial nature of the side-
chain packing problem, our search strategy does not in-
volve a search of every rotamer of every side-chain, but
rather takes a structure with residues in their most favor-
able backbone-dependent rotamers and systematically
resolves the con¯icts that arise from that structure. Each
residue begins in its most favored rotamer, according to
the rotamer database used. This is the ®rst stage struc-
ture. When a side-chain from the ®rst stage structure has
a steric clash as de®ned by equation (1) with the (®xed)
main-chain, the rotamer for that residue is changed to
progressively less favorable rotamers until one is found
that does not con¯ict with the main-chain. The second
stage structure has all of these side-chain to main-chain
clashes relieved (Summers & Karplus, 1989; Dunbrack &
Karplus, 1993).

At this point, there will be some side-chain to side-
chain clashes. Where these occur, the two clashing resi-
dues are put in a ``cluster'' of residues which interact.
The clashing residues are allowed to explore all of their
respective rotamers, save those which cause side-chain
to main-chain clashes, and any residues which clash
with these ``rotating'' residues are added to the cluster
and themselves allowed to explore all their rotamers. In
this way, clusters of residues grow by clashing with resi-
dues not in the original cluster. Clusters can also merge
when two rotamers from residues in different clusters
clash, in which case all of the residues from the two clus-
ters are combined to form a single larger cluster. Side-
chains which do not clash with the main-chain, and are
never involved in a steric clash with an activated resi-
due, are left in their most favorable backbone-dependent
rotamers.

An example of the stepwise solution to side-chain
backbone and side-chain/side-chain steric clashes is il-
lustrated in Figure 9 for a 50-residue mouse protein
kinase C, PDB entry 1PTQ (Zhang et al., 1995).

When the clusters have grown to their ®nal size, each
one represents an exclusive subset of residues which are
allowed to interact with each other. Each cluster is
solved, in turn, through a combinatorial search to ®nd
its minimum steric clash score. When all of the clusters
have been solved, the stage three structure is output as
the solution.

The search procedure tests each residue and combi-
nation of residues in the order they were added to the
cluster. Rotamers for each residue are tested in order of
decreasing favorability. The ®rst combination of rota-
mers with a steric clash score of zero is taken as the ®nal
solution. If no such combination is found, all the rotamer
combinations are searched, and the combination with
the minimum steric clash score is taken as the best poss-
ible solution.

Parsing large clusters

Occasionally, clusters grow too large to be solved
quickly with a combinatorial search. When such a large
number of combinations is reached, the cluster is broken
into sub-clusters to speed the solution time. In our case,
the limit is set for clusters that cannot be solved by the
combinatorial search in approximately one second,
which is reached for clusters containing more than
1.5 � 107 rotamer combinations, about 15 residues. A
large cluster is parsed by ®nding the residue in that clus-
ter whose removal from the cluster results in the smallest
sub-clusters. Then each of the sub-clusters is solved in
the presence of each of the ``keystone'' residue's poten-
tial rotamers. For example, in a 21-residue cluster where
every residue has three potential rotamers, the combi-
nations to search will number 321, or 1.0 � 1010. If a resi-
due in this cluster is found which divides the cluster into



Figure 9. Outline for the resolution
of steric con¯icts for PDB entry
1PTQ (Zhang et al., 1995).
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two 10-residue sub-clusters, then the combinations to
search will number 3(310 � 310) �3.5 � 105.

This parsing of clusters into sub-clusters is a recursive
process, and if the sub-clusters still contain more combi-
nations than the cutoff, or if a keystone residue fails to
break a cluster into non-interacting sub-clusters, the re-
maining clusters are passed down to a new level for ad-
ditional parsing. In some very rare cases, the parse
routine cannot ®nd a subset of keystones which breaks
the cluster up fast enough to overcome the combinato-
rics.

Rotamer libraries

Three different rotamer libraries were tested. To
measure the importance of the backbone-dependence of
the rotamers, the ®rst library is a set of backbone-inde-
pendent rotamers derived from the 393 protein chains
used in the 1996 update of the rotamer library described
by Dunbrack & Karplus (1993). This set represents each
side-chain in each of three positions , t, g�, and gÿ, at w1

for all side-chains except Pro and at w2 for Arg, Lys, Met,
Glu, Gln, Asp, Asn, Trp, Ile, and Leu, producing a total
of nine rotamers for these side-chains. Pro w2 is deter-
mined by its w1 rotamer, while the aromatics have w2 set
at their most favorable position, near 90�. For the longer
residues Met, Glu, Gln, Arg, and Lys, w3 and w4 are left
in the trans rotamer. The rotamers for each residue type
are listed with their observed frequency in the database.
This set represents a backbone-independent rotamer li-
brary akin to that described by Ponder & Richards
(1987).

The second set of rotamers is a backbone-dependent
library which comes from the 1996 update of the Dun-
brack and Karplus rotamer library. This library provides
three rotamer choices for each residue, with w1 in t, g�,
or gÿ positions. The rotamers are listed with their ob-
served frequencies, or with their expected frequencies in
backbone positions that are sparsely populated in the da-
tabase. Frequencies were determined with a Bayesian
statistical analysis of the backbone-dependent rotamer
populations (R. L. D. & F. E. C., unpublished results). w2

for this library is typically left in the trans rotamer, but the
exact value varies with dependencies on w1 and the local
backbone. w3 and w4 for longer side-chains are set to 180�.

To test the advantage of articulating w2 as well as w1, a
third library was constructed. This library also contains
backbone-dependent rotamers, but with up to nine rota-
mers representing t, g�, and gÿ positions for w1 and w2.
The rotamers were ordered based on observed and ex-
pected frequencies from the Bayesian analysis of the
backbone-dependent w1 rotamer frequencies and the con-
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ditional probabilities of the w2 rotamers on the w1 rota-
mers.

Self-backbone tests of side-chain
conformation prediction

We evaluated SCWRL by predicting side-chain confor-
mations from the experimentally determined backbones
of 299 crystal structures. These were protein crystal
structures from the PDB with resolutions <2.0 AÊ and R-
factors <20%, ranging from 40 to 300 residues, with se-
quence identities less than 90% between any two struc-
tures in the set.

In a second evaluation stage, SCWRL was applied to
all 4705 structures in the August 1996 update of the
PDB. Of these, 338 contained solely nucleic acid or HE-
TATOM records and 124 were theoretical model struc-
tures. Of the 4243 which remained, 58 failed to pass
through SCWRL successfully, either because they con-
tained more than 2000 residues (24) or because the parse
subroutine failed to break the clusters into manageable
size (34). The remaining 4185 structures were success-
fully modeled by SCWRL.

Prediction of side-chain conformations in homology
(non-native backbone) modeling

Pairs of protein sequences from every protein struc-
ture in the PDB were aligned. The 911 pairs of align-
ments from sequences of the same length, which aligned
with no gaps and which had 30 to 90% sequence iden-
tity, were used by SCWRL to construct 1822 homology
models with the sequence of one from each pair modeled
on the backbone of the other, and vice versa. The ®rst
1822 models were constructed using only the backbone
coordinates from the template structure. This set is la-
beled method I. These models were then recalculated, re-
taining the Cartesian coordinates of residues from the
template crystal structure where they were identical in
the sequence alignment to the target structure, for
example where a Phe from the target sequence matched
a Phe from the template sequence. All mutated residues,
for example a Phe matched against an Arg, were con-
structed from the backbone-dependent w1 and w2 library.
This second set of 1822 models is labeled method II. A
third set of models were built, retaining the w1 rotamers
between substitutions of residues containing the same
number of atoms in the Cg positions. For example, a tem-
plate Arg determines the w1 rotamer of the target His,
and a template Thr determines the w1 rotamer of the
modeled Ile in the same position. For substitutions from
template Pro, Gly, or Ala residues to other residues, the
library is used. This set is labeled method III. A method
IV set was constructed with the rules of method III, ex-
cept that identical residue side-chain coordinates are pre-
served as in method II.

A second set of 534 homology model targets, this time
with gaps, was created by aligning the 299 test set se-
quences and retaining those pairs with greater than 30%
sequence identity. The test set was used to take advan-
tage of the high quality of the structures, as well as to
limit the number of homologous pairs found, which
would be enormous in the full PDB when gaps are al-
lowed. Deleted residues, where the template is longer
than the target, were removed from the template struc-
ture while insertions, where the target is longer than the
template, were not modeled. The four modeling methods
described above were used on each of these models in
this test set.

Acknowledgements

We thank John Troyer for helpful programming ad-
vice. M. J. B. is partially supported by an NIH pharma-
ceutical sciences training grant (GM07175). R. L. D. is an
NIH postdoctoral fellow (GM16279). This work was sup-
ported by a grant from the National Institutes of Health
(GM39900).

References

Bamborough, P. & Cohen, F. E. (1996). Modeling pro-
tein-ligand complexes. Curr. Opin. Struct. Biol. 6,
236±241.

Benedetti, E., Morelli, G., Nemethy, G. & Scheraga, H.
A. (1983). Statistical and energetic analysis of side-
chain conformations in oligopeptides. Int. J. Peptide
Protein Res. 22, 1±15.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer,
E. F. J., Brice, M. D., Rodgers, J. R., Kennard, O.,
Shimanouchi, T. & Tasumi, M. (1977). The Protein
Data Bank: a computer-based archival ®le for
macromolecular structures. J. Mol. Biol. 112, 535±
542.

Bhat, T. N., Sasisekharan, V. & Vijayan, M. (1979). An
analysis of side-chain conformation in proteins. Int.
J. Peptide Prot. Res. 13, 170±184.

Blundell, T. L., Sibanda, B. L., Sternberg, M. J. E. &
Thornton, J. M. (1987). Knowledge-based prediction
of protein structures and the design of novel
molecules. Nature, 326, 347±352.

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D.
J., Swaminathan, S. & Karplus, M. (1983).
CHARMM: a program for macromolecular energy,
minimization, and dynamics calculations. J. Comput.
Chem. 4, 187±217.

Browne, W. J., North, A. C. & Phillips, D. C. (1969). A
possible three-dimensional structure of bovine
alpha-lactalbumin based on that of hen's egg-white
lysozyme. J. Mol. Biol. 42, 65±86.

Chandrasekaran, R. & Ramachandran, G. N. (1970). Stu-
dies on the conformation of amino acids, XI. Analy-
sis of the observed side group conformations in
proteins. Int. J. Protein Res. 2, 223±233.

Chung, S. Y. & Subbiah, S. (1996). A structural expla-
nation for the twilight zone of protein sequence
homology. Structure, 4, 1123±1127.

Clopper, C. J. & Pearson, E. S. (1934). The use of con®-
dence or ®ducial limits illustrated in the case of the
binomial. Biometrika, 26, 404.

Compton, D. A. C., Montero, S. & Murphy, W. F.
(1980). Low-frequency Raman spectrum and asym-
metric potential function for internal rotation of gas-
eous n-butane. J. Phys. Chem. 84, 3587±3591.

David, C. (1993). Sprouting side-chain conformations in
X-PLOR simulations of peptides. J. Comput. Chem,
14, 715±717.

Defay, T. & Cohen, F. E. (1995). Evaluation of current
techniques for ab initio protein structure prediction.
Proteins: Struct. Funct. Genet. 23, 431±445.

Desmet, J., De Maeyer, M., Hazes, B. & Lasters, I.
(1992). The dead-end elimination theorem and its



Prediction of Side-chains in Homology Modeling 1281
use in protein side-chain positioning. Nature, 356,
539±542.

Dunbrack, R. L., Jr & Karplus, M. (1993). Backbone-
dependent rotamer library for proteins: Application
to side-chain prediction. J. Mol. Biol. 230, 543±574.

Dunbrack, R. L., Jr & Karplus, M. (1994). Conformation-
al analysis of the backbone-dependent rotamer pre-
ferences of protein side-chains. Nature Struct. Biol. 1,
334±340.

Durig, J. R. & Compton, D. A. C. (1979). Analysis of tor-
sional spectra of molecules with two internal C3v
rotors. 12. Low frequency vibrational spectra,
methyl torsional potential function, and internal ro-
tation of n-butane. J. Phys. Chem. 83, 265±268.

Eisenmenger, F., Argos, P. & Abagyan, R. (1993). A
method to con®gure protein side-chains from the
main-chain trace in homology modeling. J. Mol.
Biol. 231, 849±860.

Faber, H. R. & Matthews, B. W. (1990). A mutated T4
lysozyme displays ®ve different crystal
conformations. Nature, 348, 263±266.

Gelin, B. R. & Karplus, M. (1979). Side-chain torsional
potentials: Effect of dipeptide, protein, and solvent
environment. Biochemistry. 18, 1256±1268.

Glantz, S. A. (1992). Primer of Biostatistics, McGraw-Hill,
New York.

Holm, L. & Sander, C. (1992). Fast and simple Monte
Carlo algorithm for side-chain optimization in pro-
teins: application to model building by homology.
Proteins: Struct. Funct. Genet. 14, 213±223.

Hwang, J. K. & Liao, W. F. (1995). Side-chain prediction
by neural networks and simulated annealing
optimization. Protein Eng. 8, 363±370.

James, M. N. G. & Sielecki, A. R. (1983). Structure and
re®nement of penicillopepsin at 1.8 AÊ resolution.
J. Mol. Biol. 163, 299±361.

Janin, J., Wodak, S., Levitt, M. & Maigret, B. (1978).
Conformation of amino acid side-chains in proteins.
J. Mol. Biol. 125, 357±386.

Kishan, K. V., Zeelen, J. P., Noble, M. E., Borchert, T.
V. & Wierenga, R. K. (1994). Comparison of the
structures and the crystal contacts of trypanosomal
triosephosphate isomerase in four different crystal
forms. Protein Sci. 3, 779±787.

Koehl, P. & Delarue, M. (1994). Application of a self-
consistent mean ®eld theory to predict protein side-
chains conformation and estimate their confor-
mational entropy. J. Mol. Biol. 239, 249±275.

Kono, H. & Doi, J. (1994). Energy minimization method
using automata network for sequence and side-
chain conformation prediction from given backbone
geometry. Proteins: Struct. Funct. Genet. 19, 244±255.

Kossiakoff, A. A., Randal, M., Guenot, J. & Eigenbrot, C.
(1992). Variability of conformations at crystal con-
tacts in BPTI represent true low-energy structures.
Proteins: Struct. Funct. Genet. 14, 65±74.

Lasters, I. & Desmet, J. (1993). The fuzzy-end elimin-
ation theorem: Correctly implementing the side-
chain placement algorithm based on the dead-end
elimination theorem. Protein Eng. 6, 717±722.

Laughton, C. A. (1994). Prediction of protein side-chain
conformations from local three-dimensional hom-
ology relationships. J. Mol. Biol. 235, 1088±1097.

Lee, C. & Subbiah, S. (1991). Prediction of protein side-
chain conformation by packing optimization. J. Mol.
Biol. 217, 373±388.

Levitt, M. (1992). Accurate modeling of protein confor-
mation by automatic segment matching. J. Mol. Biol.
226, 507±533.
McGregor, M. J., Islam, S. A. & Sternberg, M. J. E.
(1987). Analysis of the relationship between side-
chain conformation and secondary structure in
globular proteins. J. Mol. Biol. 198, 295±310.

Morris, A. L., MacArthur, M. W., Hutchinson, E. G. &
Thornton, J. M. (1992). Stereochemical quality of
protein structure coordinates. Proteins: Struct. Funct.
Genet. 12, 345±364.

Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W.
S., Cheatham III, T. E., Ferguson, D. M., Seibel, G.
L., Singh, U. C., Weiner, P. K. & Kollman, P. A.
(1995). AMBER 4.1. University of California, San
Francisco.

Pearson, W. R. (1990). Rapid and sensitive sequence
comparison with FASTP and FASTA. Methods Enzy-
mol. 183, 63±98.

Pearson, W. R. & Lipman, D. J. (1988). Improved tools
for biological sequence analysis. Proc. Natl Acad. Sci.
USA, 85, 2444±2448.

Ponder, J. W. & Richards, F. M. (1987). Tertiary tem-
plates for proteins: Use of packing criteria in the
enumeration of allowed sequences for different
structural classes. J. Mol. Biol. 193, 775±791.

Ring, C. S. & Cohen, F. E. (1993). Modeling protein
structures: construction and their applications.
FASEB J. 7, 783±790.

Sasisekharan, V. & Ponnuswamy, P. K. (1970). Backbone
and side-chain conformations of amino acids and
amino acid residues in peptides. Biopolymers, 9,
1249±1256.

Sasisekharan, V. & Ponnuswamy, P. K. (1971). Studies
on the conformation of amino acids. X. Confor-
mations of norvalyl, leucyl and aromatic side
groups in a dipeptide unit. Biopolymers, 10, 583±
592.

Schrauber, H., Eisenhaber, F. & Argos, P. (1993). Rota-
mers: to be or not to be? An analysis of amino acid
side-chain conformations in globular proteins. J. Mol.
Biol. 230, 592±612.

Schulz, G. E. & Schirmer, R. H. (1979). Principles of Pro-
tein Structure. In Springer Advanced Texts in Chem-
istry (Cantor, C. R., ed.), Springer-Verlag, New
York.

Shenkin, P. S., Farid, H. & Fetrow, J. S. (1996). Predic-
tion and evaluation of side-chain conformations for
protein backbone structures. Proteins: Struct. Funct.
Genet, 26, 323±352.

Summers, N. L. & Karplus, M. (1989). Construction of
side-chains in homology modeling. Application to
the C-terminal lobe of rhizopuspepsin. J. Mol. Biol.
210, 785±811.

Summers, N. L., Carlson, W. D. & Karplus, M. (1987).
Analysis of side-chain orientations in homologous
proteins. J. Mol. Biol. 196, 175±198.

Sutcliffe, M. J., Haneef, I., Carney, D. & Blundell, T. L.
(1987a). Knowledge based modeling of homologous
proteins, Part I: three-dimensional frameworks de-
rived from the simultaneous superposition of mul-
tiple structures. Protein Eng. 1, 377±384.

Sutcliffe, M. J., Hayes, F. R. & Blundell, T. L. (1987b).
Knowledge based modeling of homologous pro-
teins, Part II: rules for the conformations of substi-
tuted side-chains. Protein Eng. 1, 385±392.

Swanson, E. (1994). In PSSHOW Users Guide1.9 edit.
Tanimura, R., Kidera, A. & Nakamura, H. (1994). Deter-

minants of protein side-chain packing. Protein Sci. 3,
2358±2365.

Tuffery, P., Etchebest, C., Hazout, S. & Lavery, R.
(1991). A new approach to the rapid determination



1282 Prediction of Side-chains in Homology Modeling
of protein side-chain conformations. J. Biomol.
Struct. Dynam. 8, 1267±1289.

Tuffery, P., Etchebest, C., Hazout, S. & Lavery, R.
(1993). A critical comparison of search algorithms
applied to the optimization of protein side-chain
conformations. J. Comput. Chem, 14, 790±798.

Vasquez, M. (1995). An evaluation of discrete and conti-
nuum search techniques for conformational analysis
of side-chains in proteins. Biopolymers, 36, 53±70.

Vasquez, M. (1996). Modeling side-chain conformation.
Curr. Opin. Struct. Biol. 6, 217±221.
Wiberg, K. B. & Murcko, M. A. (1988). Rotational bar-
riers. 2. Energies of alkane rotamers. An examin-
ation of gauche interactions. J. Am. Chem. Soc. 110,
8029±8038.

Wilson, C., Gregoret, L. M. & Agard, D. A. (1993). Mod-
eling side-chain conformation for homologous pro-
teins using an energy-based rotamer search. J. Mol.
Biol. 229, 996±1006.

Zhang, G., Kazanietz, M. G., Blumberg, P. M. & Hurley,
J. H. (1995). Crystal structure of the cys2 activator-
binding domain of protein kinase C delta in com-
plex with phorbol ester. Cell, 81, 917±924.
Edited by B. Honig
(Received 11 October 1996; received in revised form 10 November 1996; accepted 24 January 1997)


	Prediction of Protein Side-chain Rotamers from a Backbone-dependent Rotamer Library: A New Homology Modeling Tool
	Introduction
	Results and Discussion
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Tests on self-backbones
	Comparison with other methods
	Homology modeling: prediction of side-chain conformations on non-self backbones

	Conclusions
	Methods
	Table 5.
	Figure 8.
	Figure 9.
	General
	Search strategy
	Parsing large clusters
	Rotamer libraries
	Self-backbone tests of side-chain conformation prediction
	Prediction of side-chain conformations in homology (non-native backbone) modeling

	Acknowledgements
	References


