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Abstract

During recent years many protein fold recognition methods have been developed, based on different
algorithms and using various kinds of information. To examine the performance of these methods several
evaluation experiments have been conducted. These include blind tests in CASP/CAFASP, large scale
benchmarks, and long-term, continuous assessment with newly solved protein structures. These studies
confirm the expectation that for different targets different methods produce the best predictions, and the final
prediction accuracy could be improved if the available methods were combined in a perfect manner. In this
article a neural-network-based consensus predictor, Pcons, is presented that attempts this task. Pcons
attempts to select the best model out of those produced by six prediction servers, each using different
methods. Pcons translates the confidence scores reported by each server into uniformly scaled values
corresponding to the expected accuracy of each model. The translated scores as well as the similarity
between models produced by different servers is used in the final selection. According to the analysis based
on two unrelated sets of newly solved proteins, Pcons outperforms any single server by generating∼ 8%–
10% more correct predictions. Furthermore, the specificity of Pcons is significantly higher than for any
individual server. From analyzing different input data to Pcons it can be shown that the improvement is
mainly attributable to measurement of the similarity between the different models. Pcons is freely accessible
for the academic community through the protein structure-prediction metaserver at http://bioinfo.pl/meta/.
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As the genome projects proceed, we are presented with an
exponentially increasing number of protein sequences, but
with only a very limited knowledge of their structure or
function. Because the experimental determination of protein
structure or function is not a trivial task, the quickest way to
gain some understanding of these proteins and their genes is
by relating them to proteins or genes with known properties.
Improving the algorithms that examine these relationships is
a fundamental challenge in bioinformatics today. This work
focuses on protein structure-prediction approaches, which

are easier to quantify and compare than function-prediction
protocols.
There are many methods of database searches that have

been developed to detect structurally related proteins based
on single sequences (Needleman and Wunsch 1970; Smith
and Waterman 1981), multiple sequence alignments or pro-
files (Gribskov et al. 1987; Altschul et al. 1997; Karplus et
al. 1998; Rychlewski et al. 2000), and predicted (Fischer
and Eisenberg 1996; Rice and Eisenberg 1997; Rost et al.
1997; Kelley et al. 2000) or experimentally determined
(Jones et al. 1992) structures. Furthermore, some groups use
other structural information from the template introducing
special gap penalties in loop regions (Sanchez and Sali
1998), and other groups use special alignment techniques
(Alexandrov and Luethy 1998). Several of these methods
are available as web servers.
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In several recent studies the ability of different methods
to detect proteins that share the same fold has been studied
(Abagyan and Batalov 1997; Di Francesco et al. 1997; Park
et al. 1997, 1998; Brenner et al. 1998; Lindahl and Elofsson
2000). These studies have provided a rather clear picture
with some important conclusions: (1) The common practice
of describing similarity as the fraction of identical residues
should be abandoned. (2) The exact choice of parameters
such as gap penalties greatly affects the performance. (3)
Methods using heuristic alignment techniques such as
FASTA (Pearson and Lipman 1988; Pearson 1995) or
BLAST2 (Altschul et al. 1997) do not perform as well as
methods using optimal alignments. In many studies (Park et
al. 1997, 1998; Salamov et al. 1999) it was also shown that
the use of evolutionary information improves the detection
rate, especially on the superfamily level (Lindahl and Elofs-
son 2000). Other studies revealed that the use of structural
information also increases the ability to detect distantly re-
lated proteins (Lindahl and Elofsson 2000; Panchenko et al.
2000).
Lately, in addition to the evaluation of the ability of dif-

ferent methods to recognize the correct fold, some studies
have also focused on the quality of the generated alignment
(Domingues et al. 2000; Sauder et al. 2000; Bujnicki et al.
2001a; Elofsson 2001). An important conclusion from these
studies is that for different targets the best predictions are
often made by different methods. It is even quite common,
for a single method and pairs of distantly related proteins,
that the optimum choice of alignment parameters differs
from case to case. Therefore, when evaluating the accuracy
of a structure-prediction protocol in a large set, it is quite
clear that its performance could be increased if different,
best suited, approaches could be applied in appropriate
cases.
In this study we have examined the possibility of com-

bining several fold recognition methods to select the best
prediction for each target. By making a consensus predic-
tion, that is, selecting the most common model generated by
all methods, we show that∼ 8%–10% more correct predic-
tions can be generated than by the best individual method
used. The improvement is most significant for the difficult
targets.
Some groups have used simple forms of consensus pre-

dictors, wherein several models are created for each sequen-
ce–template pair. The Inbgu method performs five align-
ments using combinations of single-sequence and profile
data (Fischer 2000). The 3D-PSSM method performs three
alignments for each sequence–template pair (Kelley et al.
2000). In both Inbgu and 3D-PSSM all alignments are made
using predicted secondary-structure information for the
query sequence and the experimentally determined second-
ary structure of the template protein. The alignments of
Inbgu are made using either single-sequence or multiple-
sequence information of the query and the template. In 3D-

PSSM two alignments are made using the query sequence
and two different template profiles, one derived from a su-
perfamily-wide structural alignment. The third alignment
uses the template sequence and a profile obtained from the
query sequence. For each query–template pair these meth-
ods choose one alignment; 3D-PSSM chooses the highest
scoring one, whereas Inbgu also takes the rank into account.
The server (Pcons) and the approach presented here differ

significantly from earlier consensus predictors. A set of
publicly available protein fold recognition web servers are
used to produce input data. This way the consensus predic-
tor can be improved if new structure-prediction servers be-
come available or can automatically improve if the existing
ones become more accurate. To efficiently combine the re-
sults of various methods all collected models are compared
using a structural superposition algorithm. Pcons uses a set
of neural networks to predict the quality and accuracy of all
collected models, and if several servers predict one particu-
lar fold, Pcons assigns a high score to it. Pcons also differs
from most earlier methods in the way that correct predic-
tions are defined. The networks are trained to predict the
quality of a model and not whether a correct fold is recog-
nized. This might be advantageous as it is not trivial to
uniquely define folds (Hadley and Jones 1999), and even if
the correct fold is found, the alignment could potentially be
wrong. Finally, the predicted model quality and the simi-
larity to other models are used in the ultimate assessment
and scoring of the evaluated model. A web server has
been implemented providing access to this approach as a
part of the protein structure-prediction metaserver at http://
bionfo.pl/meta/.

Results and Discussion

Pcons does not make any new predictions; instead, it uses
predictions produced by six web servers. Pcons uses two
types of information from the servers: the score and the
overall fraction of other structurally similar models pro-
duced by other servers. Other types of input data, such as
the length of the models, were also tested, but did not im-
prove the performance and were therefore ignored. The
similarity between two predictions is measured in two dif-
ferent ways, either by measuring the similarity of the mod-
els produced by the different servers or by measuring the
similarity of the templates identified by these servers. The
reason for using both model and template similarities is that
if the alignment is wrong the template similarity can still
give information about similarities between predictions. For
each pair of models or templates, a structural superposition
is performed. Two models or templates are assumed to be
similar if the structural alignment has aP-value <10−3

(Cristobal et al. 2001). Using different combinations of the
similarity measures, five different networks were trained
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(see Table 1). For each fold recognition server a primary
neural network layer was trained to predict the quality of a
model based on the confidence score reported by the server
and the fraction of other similar models. Finally, a second-
ary jury network was used to combine the results of the six
primary networks for each individual server (see Fig. 1). It
should be noted that the jury network is not necessary, but
we found that including it increased the performance
slightly. All comparisons were done using a fourfold cross-
validation.
The first version of the network, NN-score, uses only the

confidence scores reported by all servers, but NN-all in
addition uses the fraction of all models and templates that
are similar to the evaluated model. In the next version,
NN-combined, we use two additional types of structural
comparisons, the fraction of similar first-ranked models/
templates and the fraction of similar models/templates that
are above the proposed cutoff for each server. In another
version, NN-noscore, we use the same information, but ex-
clude the confidence scores. Finally, we created the NN-
model network that can be used for fast comparison. Be-
cause of computational limitations, NN-model is the net-
work used by the current Pcons implementation at http://
bioinfo.pl/meta/.

Consensus predictions find more correct
models for the difficult targets

This study is based on 125 different targets and 6 different
servers producing up to 10 different models each. The Live-
Bench-1 experiment provided the input data (Bujnicki et al.
2001a). The target proteins were divided into 30 easy targets
(EASY category) and the 95 remaining difficult targets
(HARD category). The performance of several servers has
been analyzed using this set of data in an earlier study
(Bujnicki et al. 2001a).
In Table 2 the number of correct models from the indi-

vidual servers and the consensus networks are shown. From
Table 2 it is clear that the consensus networks detect more
correct targets than any individual server. For the easy tar-
gets all the networks perform approximately as well as, but

not better than, the best individual server. For the difficult
targets, all the consensus methods that use structural com-
parisons detect significantly more targets (30) than any
single server (21), whereas NN-score, that does not, shows
no significant improvement.
It is not only important to identify a correct model, it is

also important to be able to separate incorrect models from
correct models. One way to study this is to sort the models
according to the score and then plot the cumulative number
of correct models versus incorrect models, as has been done
in several earlier studies (Park et al. 1997, 1998). The con-
sensus predictor NN-model finds∼ 20% more correct mod-
els for any number of incorrect models than the best indi-
vidual server (see Fig. 2). For clarity, we have only shown
NN-model in this figure. However, the performance of the
other networks is similar.
There are four different networks that use structural in-

formation, NN-all, NN-combined, NN-noscore, and NN-
model. From Table 2 it seems as if these four networks
perform alike. However, from the correlations coefficients it
can be seen that NN-model does not perform quite as well
as the others (see Table 3). In Table 3, the correlation co
efficients, the Matthews correlation coefficients (MCC), and
the sensitivity/specificity values for all the consensus net-
works are shown. It can be seen that at a predicted LGscore
of 10−3 ∼ 80% of the models are correct and up to 75% of all
correct models are detected. At 10−5 the specificity is higher
than 90%, but the sensitivity has dropped below 50%. In-
terestingly it seems as if NN-model has a slightly higher
specificity but a lower sensitivity than the other networks.
The good performance of NN-noscore was a surprise to

us. We did not expect it to be possible to completely ignore
the reported confidence score of the individual servers and
still perform quite well. One possible explanation is that it
is statistically unlikely that an incorrect top-ranking model
would be similar to other top-ranking models. This would
imply that any model that is similar to many other models is
most likely correct.
The detailed analysis shows that the correlation coeffi

cient andMCC for NN-score is substantially lower than for the
networks that use structural comparisons. In Table 2, it is

Table 1. Description of the information used by the different neural networks used in this study

Method Scores
Model/
Template All First

Over
cut-off

Similarity
measure

NN-score Yes none — — — LGscore2
NN-all Yes Both Yes — — LGscore2
NN-combined Yes Both Yes Yes Yes LGscore2
NN-noscore No Both Yes Yes Yes LGscore2
NN-model Yes Model Yes Yes Yes LGscore

“All” refers to if the structural comparison was done using all models, while “First” refers to a structural comparison using only first ranked models and
“Over cut-off” refers to structural comparisons for all models above the proposed cutoff. LGscore2 and LGscore are the two methods used to measure the
quality of a model. LGscore2 is alignment independent, while LGscore is alignment-dependent.
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shown that NN-score does not detect more easy or difficult
targets than the best servers. However, the overall perfor-
mance is slightly better as different methods are better for
easy or difficult targets. This indicates that the additional
information extracted using the pairwise model or template
comparisons is the main reason for the improvement
achieved by Pcons.

Most selected models are the first-ranked
models from Inbgu and 3D-PSSM

The neural network translated the confidence scores of the
servers into values estimating the accuracy of the models.
The final prediction choice is based on this translation, and
the model with the highest estimated accuracy is selected. In

Fig. 1. Description of the NN-all neural networks used in this study. (Toppanel) Generation of the inputs to NN-all. First, up to 60
models are collected from six different web servers. The structure of these models and the related templates are compared to the
structure of all other models and templates. Three data points are fed into the network—the score, the fraction of similar models, and
the fraction of similar templates. A separate network is trained for each server. For each model obtained from one server the log of
LGscore2 is predicted by a first-layer neural network. The output from these networks is then fed into the jury network.
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Table 4, the origin of the models selected by the consensus
predictor is shown. The most common predictions of the
NN-score network originate from the Inbgu output, whereas
for all other networks 3D-PSSM is the most frequent ori-
gin. Models with an origin in FFAS are quite common
(15%–24%) as well, but GenTHREADER, Sam-T98, and
PDBBLAST are less frequent. In contrast, the NN-noscore
network selects the models with similar frequency from all
servers, with a surprising exception in the case of Gen-
THREADER, which is chosen less frequently. As can be
seen in Figure 2, GenTHREADER is one of the servers with
the best ability to distinguish between the correct and in-
correct models. On the other hand, the scoring function used
by GenTHREADER makes it difficult for the neural net-
work to distinguish between strong and very strong predic-
tions. Therefore, in cases of trivial predictions other servers
are favored. In addition, other benchmarks (Bujnicki et al.
2001a) have shown that even if the GenTHREADER pre-
diction is correct, other servers frequently generate better
models.
The model chosen by the consensus predictor is not al-

ways one of the models reported with rank one by the serv-
ers. Table 5 shows that a first-ranked model is chosen in
26% to 82% of the cases. When structural comparisons are
included a significant number of higher ranked models are
selected. The NN-model network selects more first-ranked
models than the other networks, and the NN-combined net-
work selects fewer than the NN-all network. This indicates
that the more structural comparison terms are included the
less important is the score.

The performance of Pcons is sustained
on additional test sets

In addition to the jackknifed tests on the LiveBench-1 tar-
gets, two additional test sets were used: CASP4 and the

LiveBench-2 set (Bujnicki et al. 2001b). In the CASP4 set
as well as for some of the LiveBench targets we had no
predictions from Sam-T98, as it has been replaced by Sam-
T99. To compensate for this we retrained the networks with-
out Sam-T98 on the LiveBench-1 targets. In these studies
NN-model was used, because it is implemented as a part of
the metaserver (http://bioinfo.pl/meta/).
In the automatic evaluation of the CAFASP2 results an-

other method, MaxSub (Siew et al. 2000) was used to evalu-
ate the targets. Using this evaluation Pcons did not perform
significantly better than the best individual server. Pcons
predicted 6 (out of 26) models correctly, with a total Max-
Sub score of 11.1. FFAS also predicted 6 models correctly
with a total MaxSub score of 11.6. However, it should be
noted that for 18 of the 26 targets none of the individual
methods made a correct first-ranked prediction, that is, there
are only 8 targets where the consensus predictor could pos-
sibly make a correct prediction. The main reason for Pcons
not to perform better than FFAS is mainly attributable to
one case (T0110), where the consensus prediction made a
suboptimal choice by selecting the first model from Inbgu
instead of a more accurate model from 3D-PSSM or FFAS,
which was the second choice of the consensus predictor.
The LiveBench-2 targets were obtained in a similar way

as for LiveBench-1 but during the next period of nine
months. The consensus predictor performed better than any
individual server, predicting the correct structure for 33% of
the hard targets. The second best performance was obtained
by 3D-PSSM, which predicted 30% of those targets cor-
rectly. More important, the specificity of Pcons is signifi-
cantly better than for any of the individual servers on this
test set; for instance, 82 correct models were found before
the fifth incorrect model, whereas the second best server
(mGenTHREADER) detected 54 (Bujnicki et al. 2001b).
LiveBench is continuously measuring the performance of
different web servers, and all data are available at http://
bioinfo.pl/livebench/. It should be noted that additional
servers could be included in future versions of the consensus
predictor Pcons as a few new servers performed quite well on
LiveBench-2. The second generation of Pcons based on 3D-
PSSM, fugue, mGenTHREADER, FFAS, PDBBLAST, Inbgu,
and Sam-T99 performs significantly better than the first
generation (see http://bioinfo.pl/livebench/3/).

Conclusion

From this study it is evident that a combination of several
servers improves the performance of a fold recognition pro-
tocol. More correct models are identified, and the specificity
is higher. We believe that there are three possible explana-
tions for the improvements obtained with Pcons. (1) The
structural similarity between top hits (models) used here is
not sufficiently used by earlier fold recognition servers.
From earlier CASP experiments, it has been a common

Table 2. Number of correct first ranked models by each server
and network

Method
Easy
(30)

Hard
(95)

All
(125)

GenTHREADER 23 13 36
Sam-T98 22 16 38
FFAS 28 14 42
Inbgu 23 21 44
3D-PSSM 22 21 43
PDBBLAST 28 10 38
NN-score 28 20 48
NN-all 27 29 56
NN-combined 28 30 58
NN-noscore 28 30 58
NN-model 28 29 57

Note that the numbers for the neural networks are the average of 10
networks with identical architecture, but started from different random
numbers. The number of correctly identified hard targets differs with about
3 between the best and worst of these networks.
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practice among prediction teams to take into account several
models obtained with any method, and select the most com-
mon fold among the top predictions. Pcons follows this
strategy in an automated manner, and to our knowledge this
has not been implemented in any single fold recognition
method yet. As NN-score does not perform significantly
better than the best individual servers, this is obviously the
most important contribution. We believe it is likely that the
results from individual servers can be improved by using a
scoring dependent on the score for all sequence–template
pairs of the same fold. (2) The consensus predictor uses
multiple alignments for each target template pair. By using
several alignments it is possible that one of them captures

the important features of the correct structure. For instance,
in some cases it might be better to use predicted secondary
structures and in some not. As Pcons can choose models
made by different techniques for different targets it might be
able to use the best predictions of each server. An indication
that this is true is that NN-score performs slightly better
than the best server for all targets. (3) Pcons normalizes the
scores so that they relate better to the quality of the model.
Pcons is trained to predict the quality of the models and not
simply identify if the correct fold is found or not. The ad-
vantage of this can be seen when the output from Gen-
THREADER is analyzed. GenTHREADER uses a network
that is trained to separate correct and incorrect hits. This

Table 3. Matthews Correlation Coefficients, specificity, sensitivity and correlation between the true and predicted LGscore2
coefficients of the different networks

Method Mc (10−3)
Spec/Sens
(10−3)

Spec/Sens
(10−5) Correlation

NN-score 0.54 0.80/0.46 0.91/0.36 0.61
NN-all 0.72 0.81/0.75 0.94/0.46 0.77
NN-combined 0.73 0.81/0.77 0.95/0.46 0.80
NN-noscore 0.74 0.84/0.75 0.95/0.48 0.81
NN-model 0.70 0.87/0.66 0.98/0.41 0.76

For all calculations a cut-off for the predicted LGscore of 10−3 has been used. The specificity and sensitivity where calculated at two different outputs from
the networks, corresponding to a predicted LGscore2 of 10−3 and 10−5.

Fig. 2. Cumulative plot of correct versus incorrect models. To make the curves easier to analyze they are smoothed by a running
average. Correct and incorrect models are defined by using LGscore2 and a cutoff of 10−3. TheX-axis reports the number of incorrect
models according to Scop, and theY-axis indicates the number of correct models.
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results in the confidence score of GenTHREADER being
only marginally higher for an absolutely correct model than
for a borderline case. Because Pcons is trained to predict the
quality of the model its output would differ a lot between
these two models.

Materials and methods

Test and training data

The LiveBench-1 set

This study is based on 125 different structure-prediction targets
and 6 different servers producing up to 10 different models each.
The input data come from the LiveBench program, which resulted
in 125 targets submitted in the period between October 29, 1999
and April 6, 2000. The target proteins were divided into 30 easy
targets (EASY category) and 95 difficult targets (HARD cate-
gory). Per definition, easy targets were correctly predicted by
PDBBLAST (Bujnicki et al. 2001a) with an expectation (E) value
<10−5. This performance of the different servers using this set of
data has been analyzed carefully in an earlier study (Bujnicki et al.
2001a).

Additional test sets

For additional tests we have used two other sets of targets. First,
we have used the 26 hard targets that were evaluated in the fold
recognition part of CAFASP2 (Siew et al. 2000). The easy targets
were ignored as almost all the servers predicted these correctly.
CAFASP is an evaluation of automatic servers that runs in parallel
with CASP (Moult et al. 1999). Second, we have used a new
LiveBench test set created between April 13, 2000 and December
31, 2000, termed LiveBench-2. This set contained 203 targets
(Bujnicki et al. 2001b).

Measure of model/template similarity

To measure the similarity between models we used the LGscore
algorithms (Cristobal et al. 2001). The LGscore is based on a
method recently introduced by Levitt and Gerstein (1998) to cal-
culate the significance of the similarity between two structures
after a structural superposition. This measure is based on the fol-
lowing score:

Sstr = M�� 1

1 + �dij � d0�
2

−
Ngap

2 �
whereM � 20,dij is the distance between residuesi andj, d0� 5
L. andNgap is the number of gaps in the alignment.
To calculate the statistical significance of this score, Levitt and

Gerstein (1998) used a set of structural alignments of unrelated
proteins to calculate a distribution ofSstr dependent on the align-
ment lengthl. From this distribution aP-value dependent onSstr
and l was calculated.
Often, even though the fold is correctly predicted, the alignment

is suboptimal. It is possible to ignore this problem if the model is
superimposed with the correct structure before the evaluation. Af-
ter the superposition, the structurally aligned residues are consid-
ered equivalent. From these equivalences it is possible to detect the
most significant subset using the same algorithms as described
above. In this study the superposition was made using a modified
version of the algorithm used by Levitt and Gerstein (1998). After
superposition, the most significant subset was found as for LG-
score. This measure, termed LGscore2, is used to identify correct
models in this study. In the NN-model as well as in the web server
the alignment-dependent LGscore algorithm was used as it is much
faster.

Evaluation of model quality

We used LGscore2 as the measure to evaluate model accuracy as
has been done earlier in CAFASP and LiveBench (Bujnicki et al.

Table 4. Illustration of which server the neural network prefers

Method GenTHREADER Sam-T98 FFAS Inbgu 3D-PSSM PDBBLAST

NN-score 6% 11% 15% 40% 19% 9%
NN-all 5% 8% 19% 26% 34% 8%
NN-combined 7% 9% 17% 20% 33% 14%
NN-noscore 4% 14% 23% 19% 25% 16%
NN-model 4% 8% 24% 27% 27% 10%

The origin of the highest scoring model for each query sequence is analyzed.

Table 5. The origin of the highest scoring model for each of the target sequences is analyzed

Method Rank 1 Rank 2 Rank 3 Rank 4 to 10

NN-score 82% 10% 3% 5%
NN-all 48% 12% 7% 33%
NN-combined 42% 11% 8% 39%
NN-noscore 26% 15% 10% 50%
NN-model 57% 14% 5% 25%

In the column “rank,” all models which were ranked first a prediction server is shown, in “rank 2” second highest ranked etc. Even in NN-score there are
some non-first ranked models that are predicted to be better than the first ranked models; these are likely due to noise in the network and the existenceof
several models with almost identical scores for some targets.

Lundström et al.
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2001a). LGscore2 measures the quality of a model by finding the
most significantly similar segment common to the model and the
correct structure. In earlier studies we have shown that LGscore2
correlates quite well with the manual assessment by Murzin on
CASP3 data (Cristobal et al. 2001). The correlation is also strong
with several other measures used to evaluate model quality, such
as GDT (Zemla et al. 1999), MaxSub (Siew et al. 2000), and sf4
(Lackner et al. 1999). None of these measures is ideal; however, it
is our belief that the correlation is strong enough that it does not
matter much which measure is used as a target function for the
networks. An indication of this can be seen in the results from
LiveBench-2, where Pcons performs equally well using MaxSub,
LGscore, or LGscore2 for the model evaluation.

Model and template comparisons

The basis for the consensus predictor is six publicly available web
servers—PDBBLAST, FFAS, Inbgu, GenTHREADER, Sam-T98,
and 3D-PSSM. For each of the servers the top 10 hits were con-
verted to pdb models, that is, for each query sequence up to 60
different models were created and the structures of the template
proteins used were recorded. All models for the same target were
compared with each other using the LGscore2 algorithm (Bujnicki
et al. 2001a; Cristobal et al. 2001; Elofsson 2001). The templates
were also compared to each other using LGscore2. If two protein
structures (either models or templates) had an LGscore2 of 10−3 or
better, they were considered similar.
For each modeli, three variables were calculated. First, the

fraction of other models exhibiting significant similarity according
to LGscore2, that is:

�
j=1

Ns

�
k=1

Nm

��i,j,k�

Ns∗Nm

whereNs is the number of servers,Nm the number of models from
a particular server, and�(i,j,k) a function that is 1 if modeli is
similar to the model of rankk from serverj and 0 otherwise.
Second, the fraction of models similar to this model and with a

significant method score:

�
j=1

Ns

�
k=1

Nm

��j,k� ∗ ��i,j,k�

�
j=1

Ns

�
k=1

Nm

��j,k�

where�(j,k) is a function that is 1 if the model with rankk from
serverj is higher than a cutoff (see Table 6) and 0 otherwise.

Finally, the fraction of first-ranked models was measured as:

�
j=1

Ns

��i,j,1�

Ns

Three additional variables were calculated in the same way
for the templates. These six variables, together with the scores
taken from the individual methods, were fed into the network
(see Fig. 1). Different combinations of these similarity measures
were examined as described in Table 1.

In NN-model the similarities were measured differently. First,
all template comparisons were ignored. Second, the LGscore
algorithm was used for the model comparisons. This results in a
method that is significantly faster than the other methods as no
structural superpositions have to be made.

Neural networks

For the neural network implementations we used Netlab, a neural
network package for Matlab (Bishop 1995; Nabney and Bishop
1995; Netlab: Netlab neural network software. http://www.ncrg.
aston.ac.uk/netlab/). A linear activation function was chosen be-
cause it did not carry restrictions on the range of the output. The
training was carried out using error back-propagation with a sum
of square error function. The optimal gradient algorithm was used
for training.
The neural network is built in two layers (see Fig. 1). The first

layer consists of only one network for each method. The output
from this neural network is fed into a final neural network and is
thereby normalized. For a given output, the second-layer network
will obviously receive input from one of the top networks. The
second network is not really necessary as all the first-layer net-
works already are trained to predict the LGscore2. However, we
have used it because it slightly improved the performance. We also
tried to add additional information into this network, such as a
threading score, but that did not increase the performance signifi-
cantly.
The minimization of the error function (training) should be done

with the optimal number of hidden nodes and training cycles to
avoid overtraining and to minimize the training time. Method-NNs
(first layer) were trained in 150–500 cycles with seven or nine
hidden nodes, and the final-NN (second layer) was trained in 200
cycles with five hidden nodes. The magnitude of the error sum in
the test and training set is monitored in each cycle of the training
(Emanuelsson et al. 1999). The ultimate number of cycles is de-
termined, when the error sum for the test set stops decreasing and
starts to increase. It should be noted that both the number of hidden
nodes and the number of training cycles are decided at one time
before the rest of the experiment is carried out.
A key point for the performance of Pcons was to decide the

parameter to which the networks were trained. We found that if the
networks were trained to predict log(LGscore2), the results were
significantly better than if trained on LGscore2 directly.
The neural network was trained using a fourfold cross-valida-

tion. For the additional test sets (CAFASP2 and LiveBench-2) the
whole LiveBench-1 data set was used to train the network.
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