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Recently, developments have been made in predicting the
structure of docked complexes when the coordinates of the
components are known. The process generally consists of a
stage during which the components are combined rigidly and
then a refinement stage. Several rapid new algorithms have
been introduced in the rigid docking problem and promising
refinement techniques have been developed, based on
modified molecular mechanics force fields and empirical
measures of desolvation, combined with minimisations that
switch on the short-range interactions gradually. There has also
been progress in developing a benchmark set of targets for
docking and a blind trial, similar to the trials of protein structure
prediction, has taken place.
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Abbreviations
ACE atomic contact energy
BD Brownian dynamics
FFT fast Fourier transform
GA genetic algorithm
MD molecular dynamics
NOE nuclear Overhauser enhancement
PDB Protein Data Bank
rmsd root mean square deviation

Introduction 
In this review, we survey recent developments in those
techniques that aim to predict the structure of a
protein–protein complex in atomic detail, starting from the
atomic coordinates, determined by X-ray crystallography or
NMR spectroscopy, of the separate components (‘unbound’)
(the related problems of protein–DNA interactions will not
be discussed). Protein–protein interactions play a central
role in biochemistry, because the formation of the complex
has a functional consequence (e.g. signal transduction).
The task of predicting the structure of the complex is
one that we are not infrequently faced with, because of
difficulties in crystallising complexes; of the more than
fifteen thousand files in the Protein Data Bank (PDB),
many of which are able to form protein–protein complexes,
there are only a few hundred nonobligate protein–protein
complexes. (Obligate complexes are permanent multimers
whose components are not capable of independent existence.)
Accurate predictive docking methods could therefore
provide substantial structural knowledge about complexes,
from which functional information could be inferred or
experiments designed to obtain it. Most development has

been, and continues to be, targeted towards those complexes
for which the conformational change on docking is fairly
small, thus enabling the use of methods that are based on
shape and chemical complementarity of the unbound
components. This can be considered the ‘canonical case’ of
protein–protein docking and will be the focus of this review. 

The character of the interfaces in known protein–protein
complexes has been thoroughly investigated in several
reviews [1–3]. Whilst obligate complexes do have an
interface that is slightly more hydrophobic than the rest
of the molecular surface, there is very little indication of
this in nonobligate complexes. The subset of complexes
for which both components have been crystallised separately
unbound provides the main test-bed for developments in
protein–protein docking methods. There are about 30 of these
complexes and the majority are in the protease–inhibitor
or antibody–antigen class. The relative sizes of backbone
and sidechain conformational changes on binding have been
studied [4], and the protease–inhibitor and antibody–antigen
complexes compared [5]. These and many other important
classes of complexes, as well as the thermodynamics and
kinetics of their formation, are discussed in a recently
published book on protein–protein recognition [6•].

There are two parts to the docking problem: developing a
scoring function/energy function that can discriminate
correctly or near-correctly docked orientations from
incorrectly docked ones, and developing a search method
that will be able to ‘find’ a near-correctly docked orientation
with reasonable likelihood. The simplest, yet still powerful,
scoring function is shape complementarity. To use this, it
is necessary to describe the surface shape of the protein.
This may be done by discretising the molecule onto a grid
in space and considering which cells (‘voxels’) are occupied,
or by using some sort of ‘surfacing algorithm’, which
calculates the solvent-accessible or solvent-excluded surface,
and a point set that triangulates it. In carrying out this
calculation, many special cases of geometry need to be
considered [7,8]. The triangulation reflects the geometry
of the surface: surface critical points (extrema), normals
and curvature. In [9•], the distinction is drawn between
this type of ‘shape-explicit’ method and ‘shape-implicit’
methods, which use only the occupied voxels to define the
shape of the molecule. 

But shape complementarity, although sufficient to recombine
the separated components of a known complex, is not
usually sufficient to dock unbound components. From a
thermodynamic point of view, the native complex is at the
global minimum of ∆G, the free energy change (∆G) of
formation of the complex relative to its separated components
(usually taken to be unique, though there may, in rare
cases, be more than one mode of binding [10]). The calculation
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of ∆G is complicated and still the subject of research. As
well as the direct electrostatic and van der Waals interactions
between the proteins, there are water-mediated interactions;
these affect the electrostatics via the dielectric effect
and also produce the ‘hydrophobic effect’, primarily
entropic in origin.

The role of electrostatics in protein–protein interactions
has been reviewed by Sheinerman et al. [11] and Tobias
[12], and was explored from a more physical point of view
by Elcock et al. [13•]. To treat the desolvation of charged
groups in the interfaces accurately, it is necessary to solve
the full Poisson–Boltzmann equation for each different
orientation of the components that is to be examined. This
is an expensive calculation and so various approximation
schemes are used: these include the ‘semi-Coulombic’ or
‘test charge’ approximation, or the use of Coulomb’s law with
a distance-dependent dielectric, for example, proportional
to r. Then, to any of these schemes may also be added an
expression for the hydrophobic energy. Though theoretically
complicated, it is found empirically to be approximated as
a sum of the form γi Ai, where Ai is the solvent-accessible
or solvent-excluded area of atom type i [14]. A further
developed version of this, parameterised from contacts in
protein interiors, is the ‘atomic contact energy’ or ACE [15].
There are also the dispersion and hard-core interactions,
described by standard Lennard–Jones potentials. 

Some ‘softening’ of the energy function is required (a removal
of the divergences that electrostatic and Lennard–Jones
energies have at r=0), otherwise, even in near-native
dockings, these overwhelm the complementarity that
remains. However, this softening necessarily reduces the
capacity of the energy function to discriminate the correctly
docked orientation from incorrect dockings, producing the
many false positives that bedevil docking algorithms.

In practice, then, the above considerations frequently lead
to a two- or three-stage approach to docking, as outlined in
Figure 1. One begins by treating the proteins as rigid
bodies, perhaps with some surface softness, searching the
comparatively small (six-dimensional) space of relative
protein orientations (translational and rotational) and
identifying a set of candidate structures using some simple
scoring function, with shape complementarity playing a
major role. Then these structures are rescored using a more
expensive energy function that is better at discriminating
near-native orientations. In the third stage, we deal explicitly
with a model in full atomic detail (if we did not before)
and allow movement of the sidechains and possibly
backbone, minimising a (possibly yet more complicated)
energy function. The second and third stages may be
combined. The energy/score landscape is rough and so it is
clearly desirable to make the search as effective as possible
by the use of efficient optimisation algorithms [16,17]. If
extra biological information about the location of the
interface is available, it can also be used as early as possible
to simplify the search. Many of these considerations apply

to methods for docking small-molecule ligands to proteins
and any developments will be mentioned if they may be
relevant to protein–protein docking. 

First stage of docking: global search
One widely used technique in the first stage of docking is
the fast Fourier transform (FFT) method. In the FFT
method, the molecules are discretised onto a voxel grid. It
uses the fact that, if the interaction (scoring function)
between the molecules can be put into the form [18]:

Σij pi qj or Σij pi G(rij) qj

then the score can be evaluated for all relative translations
of the molecules in only O(N3 ln N) operations (where N
is the size of the grid). It is still necessary to search the
three-dimensional space of relative orientations, which is
usually done exhaustively. The functional forms given
allow the approximate evaluation of electrostatic energies
(the full Poisson–Boltzmann equation cannot be correctly
solved) and shape complementarity using step functions
that penalise overlaps between the cores of the molecules,
but favour orientations in which the occupied voxels of one
molecule lie in a ‘surface layer’ just outside the other. 

This approach was first used in molecular docking by
Katchalski-Katzir, Vakser and co-workers [19] and
subsequently in the programs FTDock [20], 3D-Dock [21],
GRAMM [22] and ZDOCK. It has proved successful in
blind trials of protein docking [23]. More recently, it has
been used in the program DOT [24•] and in work on
identifying binding sites [25]. DOT uses 50 000 relative
rotations and a 1 Å grid spacing, though 10 000 rotations

Figure 1

The stages of protein–protein docking.
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are normally used with FTDock/3D-Dock. In the unbound
case, a surface ‘softness’ of the order of 2 Å can often be
used. Very low resolutions may be used and still enable the
interface region to be identified if the trial solutions are
spatially clustered afterwards [26], though the correct
relative orientation of the components is unlikely to be
found in this case. 

A significant new technique was introduced by Ritchie
and Kemp [27••] in their program HEX — an expansion
of the molecular surface and electric field in spherical
harmonics. Fourier correlations between the expansion
coefficients are used to simplify the problem of calculating
the complementarity between the surfaces in different
orientations to that of look up in a table of precalculated
overlap integrals. 

Another new method has been developed by Palma et al.
[28•] in their program BIGGER, a surface-implicit method
in which the surfaces are discretised and represented by
values of 0 and 1 on two grids, the surface and core grids.
These are then combined in real space, but high speed can
be achieved by using fast bit-manipulation routines, as a
single integer variable can hold many voxels.

Geometric hashing [29] is a shape-explicit algorithm.
Surface critical points on one molecule (the ligand) are
used to define local coordinate frames, in which the positions
of nearby critical points are used as indices in a hash table,
which stores the current coordinate frame. The process is
then repeated for the other molecule (the receptor), the
local coordinate frames are superimposed and the positions
of the critical points near to the receptor are used to look
up the corresponding ligand reference frames in the hash
table of the ligand. A large number of correspondences to
a particular frame indicates a strong local similarity in the
shape of the surfaces, which is then checked. Again, when
docking unbound proteins, a surface ‘softness’ must be
used, corresponding to a ‘tolerance’ of about 1.5 Å in the
coordinates. Searching is replaced by table look up, so the
method is very fast. A recent development of this has been
provided in [9•]. 

Two groups have published methods using optimisation of
a real-space search with a genetic algorithm (GA) [30•,31•].
In [31•], the protein is represented by a solvent-accessible
surface with normals, surface curvature and associated
hydrogen-bonding character. The scoring function uses
surface area, complementarity of curvature and normals,
and penalises overlap of protein interiors. In [30•], a highly
physically detailed scoring function, the Charmm molecular
mechanics force field, is used from the beginning. In both
cases, the ‘chromosome’ of the GA consists of the relative
positions and orientations of the molecules (six ‘genes’).

Second stage of docking: rescoring
We now have typically a few hundred or thousand docked
complexes after the first stage. We find, for example, that,

using FTDock/3D-Dock to dock unbound components,
the largest surface complementarity score of an incorrect
docking is typically around 1.5–2 times as great as the
score of the complex that has the lowest rmsd from the
crystallographic complex.

One method of rescoring is to use the statistics of
residue–residue contacts across the interfaces of complexes
in the PDB to define ‘statistical potentials’ expressing
how much more probable it is that residues will interact
than would be expected merely from random contacts
between residues with the observed global frequencies
of occurrence. The actual contacts in a complex can
then be used to rescore it. In [32], such potentials were
calculated using a few hundred nonhomologous
nonhomodimeric protein–protein interfaces. Results were
derived for residue–residue contacts and for atom–atom
contacts of different chemical types, with the residue
potentials proving the more powerful. Similar methods
were used in [33], though with differences in the interfaces
and random model, and in [34•], in which specific versions
of the potentials were derived for the special case of
antibody–antigen binding. Similar calculations are used
to derive effective potentials between atom types for
ligand–protein docking [35] 

Other terms used in rescoring are electrostatics, hydrogen
bonding [36], desolvation, lack of buried charges and
physical unity of the interface. These were used in [28•,34•]
and in the work of Vajda, Camacho and co-workers, who
have concentrated not on the initial search, but on algorithms
for rescoring complexes [37•] and refining them (see below).
The different rescoring terms are commonly applied as a
series of sequential filters or, as in [28•], combined with
weights found by a neural network.

Third stage of docking: introduction of flexibility
At this stage of docking, the rigid-body approximation is
abandoned and flexibility is introduced, at least in the
protein sidechains and possibly in the backbone too. A
molecular mechanics force field is normally used for the
protein; water is still not usually explicitly included, but
extra electrostatic/desolvation terms may be included instead. 

As sidechain rearrangements dominate many docking
problems, a common way to simplify the search is to restrict
it to sampling just the known populated rotamers of the
sidechains. Even so, the number of combinations of rotamers
to be tested is usually too large to tackle exhaustively. One
method is to use an iterative mean-field approach [38].
More recently, it has been proposed to prune the list of
rotamers with dead-end elimination and then tackle the
rest by either a branch-and-cut algorithm or a faster heuristic
tree-based algorithm [39•]. Algorithms of this sort are
also used in some ligand–protein docking algorithms,
such as FlexE [40] and Dock 4.0 [41]. GAs are also well
suited to the problem [42]. We remark that programs
designed for protein–ligand docking can be used for the
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protein–protein problem (e.g. [43]), though there has been
no systematic comparison. 

Recent work by Vajda’s group [37•,44••] appears to have
been a notable advance. An algorithm has been developed
that, by concentrating on the reduction of the roughness
due to van der Waals interactions and then controlling its
re-introduction as docking proceeds, seems to converge
reliably from an initial rmsd of 10 Å, which may be commonly
produced by docking algorithms, to 2 Å, which is enough
for accurate structural studies. 

Larger conformational changes than the above mentioned
have generally not been tackled successfully by docking.
However, the most common known class of larger
conformational changes (48 out of 100 entries in the

Database of Molecular Movements [45]) is the class of
hinge-like interdomain movements. An algorithm capable
of tackling this problem was described in [46], but seems
not to have been tested beyond initial investigations on
the reassembly of bound ligand–protein complexes. 

Filtering 
By this, we mean the use of biological information to
constrain the structure of possible complexes. Though we
have deferred discussion until now, it can be used early in
docking. Commonly, it is known that some specific
residues must lie in the interface, either because of the
type of complex (e.g. one of the partners may be an
antibody, in which case we know that at least some of the
complementarity-determining regions must be involved)
or as a result of mutagenesis information. Provision is made

Table 1

Programs for protein–protein docking.

Program* Algorithm Laboratory URL Details 

Downloadable

3D-Dock Global: FFT; rescoring: Imperial Cancer www.bmm.icnet.uk/ Free to academic; distribution
residue potentials; refinement: Research Fund/Imperial docking/ mostly source code (C);
mean-field sidechain multicopy college (Sternberg) refinement sgi/linux

executables

HEX Global: Fourier correlation of Aberdeen University www.biochem.abdn. Free to academic; sgi/sun/
spherical harmonics (Ritchie) ac.uk/hex/ linux executables

GRAMM Global: FFT clustering and rescoring SUNY/MUSC (Vakser) reco3.ams.sunysb. Free to academic; sgi/sun/
decoys also available edu/gramm/ ibm/dec/linux/win32

executables

PPD Global: geometric hashing; Columbia ftp://flash62.bioc. Free to academic; sgi
rescoring: multiple filters (Honig) columbia.edu/pub/other executables

DOT Global: FFT for shape University of California www.sdsc.edu/CCMS/DOT Free to academic; parallelised
complementarity and approximate San Diego (Ten Eyck) under mpi; source (C/fortran)
Poisson–Boltzmann electrostatics and sun/sgi/dec/ibm

executables

BIGGER Global: bit mapping; rescoring: Universidade Nova de www.dq.fct.unl.pt/bioin/ Free to academic; win32
(Chemera) multiple filters Lisboa chemera/ executables

www.biotecnol.com/Paginas
/Chemera.htm

MERL refinement Constrained minimisation desolvation University of Boston engpub1.bu.edu/bioinfo/ Free; Charmm input scripts,
protocol (MERL) (Vajda) MERL/software/decoys.html source code (f77)

DOCK Global: grid-based energy function; University of California www.cmpharm.ucsf.edu/ Free to academic; sgi
flexible docking: random search San Francisco kuntz/dock.html executables
plus incremental construction (Kuntz)

AutoDock Grid-based empirical potential Scripps Institute www.scripps.edu/pub/ Free to academic; source
flexible docking via Monte Carlo (Olson) olson-web/download.html code and executables for sgi/
search and incremental construction dec/sun

FlexX Fragment assembly energy function: GMD-SCAI (Lengauer) cartan.gmd.de/flexx/ Licence required from 
(Boehm potential) Tripos.com

Contact authors

Program Algorithm Laboratory Contact 

DARWIN GA Charmm force field University of Pennsylvania burnett@wistar.upenn.edu

ZDOCK FFT for complementarity, electrostatics University of Boston (Weng) sullivan.bu.edu/~rong/dock/download.shtml
and residue potential

*Programs given in italics are designed principally for protein–ligand docking, but may be usable in the protein–protein case. Programs for MD, BD
and continuum electrostatics calculations are also useful.
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to use filtering information of this kind in programs such as
3D-Dock and HEX. 

It is also possible to use the ‘natural mutagenesis’ information
available from the alignment of homologous proteins to
extract similar information; this has been the subject of
much recent work, covered in detail in the reviews by
Lichtarge and Sowa (pp 21–27) and by DeLano (pp 14–20)
in this section. Generally, a cluster (‘hot spot’) of conserved
residues, particularly polar residues, identifies a binding
site with some confidence ([47•,48]; reviewed in [49]). Use
of this information is aided by the concomitant development
of structural alignment programs [50]. 

An interesting example of detailed constraints for filtering
is that which comes from NMR spectroscopy of the
complex. Even a small number of nuclear Overhauser
enhancements (NOEs) and dipolar couplings (a few tens)
suffice to determine the structure of the complex
completely to high precision if the unbound components
are also known. This is a sufficiently common and useful
case that three similar studies have been carried out
recently [51•,52•,53], using docking programs modified to
take the NMR constraints as additional input. One of
these methods [52•] can work with an unassigned 1H
spectrum, rather than NOEs, but has not been tested on
unbound components. 

Many of the programs described above are available to the
community for their own research. Because they are
computationally intensive, they must be downloaded from
the World Wide Web and run on the user’s own computer.
Table 1 provides a list of many of the available programs. 

The physics of docking: kinetics and funnel
landscapes 
The docking algorithms mentioned above do not generally
reflect the physical process of docking. The picture

emerging (see the review by Schreiber [pp 41–47] in this
section and also [54,55]) is first of a diffusional search and
then the formation of an ‘encounter complex’, which passes
though some intermediate states of increasing desolvation
to the docked complex. In the diffusional search, it is well
known from kinetics studies that components that have
charge complementarity and a strong dipole associate much
faster than would be expected from random diffusional
encounters. This is most readily visualised simply as a
‘funnel’ in the spatial and orientational degrees of freedom,
directing the incoming component towards the interface
that will bind it and orientating it correctly. Desolvation
may help here too [56]. A common way to simulate this
process is Brownian dynamics (BD) [57] (see the review by
Elcock et al. [13•] and the forthcoming review in this
journal by Gabdoulline and Wade [58]). BD simulations
have, in the past, used a simplified model of proteins, but
recently full atomistic simulations have been introduced,
which, though requiring an empirical definition of when
the encounter complex is formed, give very good
agreement with experiment ([59•] reviews recent work).
Some studies have gone beyond the encounter complex,
using surface area and ACE desolvation terms [60•]. 

As the components approach and sidechains begin to
rearrange, the ‘binding funnel’ changes from an object in
low-dimensional (Cartesian) space. It becomes more 
complex, with more dimensions, corresponding to the
flexible sidechain and backbone movements, and more
rugged, as desolvation forces and finally van der Waals
forces dominate over the smoothly changing electrostatics.
The structure of this part of the funnel has been investigated
by Zhang et al. [43]. This ‘binding funnel’ has been the
subject of several other discussions. In [61], it is predicted
that proteins that have a rougher energy landscape will be
more promiscuous in their binding. The binding funnel is
linked conceptually to the ‘folding funnel’ of modern
protein folding theory via a discussion of disorder/order
transitions. The success of the refinement method [44••]
described above suggests that this close-range binding
funnel remains if the energy function is modified. 

In recent work from Vakser’s group [62], the spatial
distribution and clustering of high-scoring orientations
generated by their GRAMM docking program are used to
define those proteins for which the docking landscape has
a funnel. A majority (about 70%) of the complexes have a
funnel-like landscape by this criterion.

Do the conformational changes on docking reflect the con-
formational flexibility shown by the isolated components?
Molecular dynamics (MD)-based work focusing on the
sidechain movements of the unbound components of four
complexes has been carried out [63•]; it was found that
there is some tendency to move towards the conformations
found in the complex. We have been engaged in related
work (GR Smith, MJE Sternberg, unpublished data) and
included small backbone conformational changes. We

Figure 2

Figure comparing (a) the unbound structure of ribonuclease inhibitor
and projections along the lowest eigenvector from principal
components analysis of MD simulations with (b) the unbound (red)
and bound (blue) X-ray structures of the inhibitor (PDB codes 2bnh
and 1dfj, respectively). The coloured region forms the majority of the
interface with the ribonuclease.

(a) (b)
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performed a principal components analysis of 1 ns duration
MD trajectories and compared the eigenvectors of lowest
frequency, describing conformational changes, with the
known conformational changes on docking, using a sliding
window along the protein backbone. We found appreciable
overlap in many cases; an example that works particularly
well is the ribonuclease inhibitor (PDB code 2bnh). In this
case, the inner product and overlap of the first MD
eigenvector, and the known conformational change (over
an eight-residue moving window) in the interface region of
the inhibitor 2bnh is very high at 0.78 (with a peak of 0.99).
This indicates that the chains are moving in the same
direction, as shown in Figure 2. This result suggests
that the conformational changes reflect the natural
conformational propensities of the unbound components,
for some complexes at least. 

Future directions and conclusions 
The protocol of fast docking followed by rescoring and
refinement is well established, and is effective in many cases
of small conformational change upon docking, especially if
biological information is available. Without this information,
it is still discouragingly difficult to get the near-native
complex from unbound components at top rank and we still
tend to settle for a good chance of getting one in the top ten
(say). New fast methods for the initial docking have been
developed and there have been advances in methods for
rescoring and refinement. Ideas from the kinetics of binding
and the role of binding funnels provide insight, and are
already beginning to have a practical effect on docking
algorithms. In particular, by emphasising the generation of
docked complexes using surface complementarity followed
by rescoring, the ‘classical’ methods may make the refinement
stage more difficult by forcing it to be carried out in the part
of the search space dominated by many deep local minima
due to van der Waals interactions between the components.

Turning from highly accurate and computationally expensive
modelling to cases in which speed is more important, the
flow of data from structural genomics projects over the
next few years will also provide a challenge to docking.
Probably, relatively few complexes will be solved, but data
about interactions (albeit with large numbers of false
positives and negatives) will come from, for example,
high-throughput yeast two-hybrid screens. It will be
useful to try to make sense of this data by docking the
components or homology models of them (as structural
genomics should make many globular proteins accessible to
homology modelling). However, at the moment, only
preliminary work has been carried out even on testing the
performance of docking programs when docking homology
models of varying degrees of accuracy. 

The guidance of docking by the inclusion of the increasing
amount of data available on protein–protein interactions
(as reviewed in this section), for example, to give 
information on binding sites, interaction partners and
conformational changes, will also be important. 

Docking approaches to protein interactions will ultimately
need to be placed in the context of the cell, where the
promiscuity of interactions, the role of crowding [64] and
the occurrence of weak (approximately millimolar)
interactions that are nevertheless of great biological
importance will need to be addressed. An examination of
weak docking interactions using BD has recently been
made [65]. The role of water in interfaces [2,66] also
requires further investigation, if the fine details of
sidechain contacts are to be reproduced. Clearly, however,
the lack of explicit water does not prevent a correct
prediction in many cases. 

At a less speculative level, there has been some agreement
on the need for the development of methods for the
assessment of current docking procedures — agreed
measures of the quality of a complex by rmsd or percentage
of native contacts and so on — and the construction of a
standard ‘test set’ of unbound components (see http://
sullivan.bu.edu/~rong/dock/benchmark.shtml) and ‘decoy sets’
(false positives from docking) of various rmsd from the correct
structure, but all passing the more obvious requirements of
acceptable surface and electrostatic complementarity [67].

An arrangement is also being put in place for blind tests of
docking methods when new protein–protein complexes
are crystallised, under a similar protocol to the successful
CASP (Comparative Assessment of Structure Prediction)
assessment exercises (see http://predictioncenter.llnl.gov).
The first such trial has recently taken place, on two anti-
body–viral receptor complexes and one kinase–substrate
complex (see http://capri.ebi.ac.uk). Groups took part
using many of the protein–protein docking programs
described above, as well as protein–ligand docking programs.
Trials such as this are essential for the evaluation of the current
status of computer methods to predict protein–protein
interaction by docking.
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