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Toward High-Resolution
de Novo Structure Prediction

for Small Proteins
Philip Bradley, Kira M. S. Misura, David Baker*

The prediction of protein structure from amino acid sequence is a grand
challenge of computational molecular biology. By using a combination of im-
proved low- and high-resolution conformational sampling methods, improved
atomically detailed potential functions that capture the jigsaw puzzle–like
packing of protein cores, and high-performance computing, high-resolution
structure prediction (G1.5 angstroms) can be achieved for small protein
domains (G85 residues). The primary bottleneck to consistent high-resolution
prediction appears to be conformational sampling.

It has been known for more than 40 years that

the three-dimensional structures of proteins are

completely determined by their amino acid

sequences (1), and the prediction of protein

structure from amino acid sequence—the Bde

novo[ structure prediction problem—is a long-

standing challenge in computational biology

and chemistry. Although there are notable ex-

ceptions, the majority of protein structures are

likely to be at global free-energy minima for

their amino acid sequences. The de novo pro-

tein structure prediction problem hence is to

find the lowest free-energy structure for a spec-

ified amino acid sequence. The problem is chal-

lenging because the size of the conformational

space to be searched is vast (2) and because

the accurate calculation of the free energies of

protein conformations in solvent is difficult.

Although there has been considerable pro-

gress in low-resolution de novo protein struc-

ture prediction (3), both the accuracy and the

reliability of the structural models produced by

these methods is fairly low: Ca-RMSDs (root

mean square deviation of alpha-carbon co-

ordinates after optimal superposition) of È4 )
with incorrect packing of the amino acid side

chains. Achieving higher resolution requires

both more physically realistic energy functions

and better conformational searching; the prob-

lem is difficult because the more realistic the

energy function, the more rugged the land-

scape, and thus the more difficult it is to

search. Here, we show that high-resolution de

novo structure prediction can be achieved by

generating structurally diverse populations of

low-resolution models and refining these

structures in the context of a physically real-

istic all-atom energy function.

Critical to high-resolution structure predic-

tion is a force field for which native structures

are low in free energy compared with non-native

structures and a refinement protocol that can

efficiently navigate the corresponding free-

energy landscape. We have developed an all-

atom force field (4) that focuses on short-range

interactions—primarily van der Waals packing,

hydrogen bonding, and desolvation—while

neglecting long-range electrostatics. The high-

resolution refinement protocol (5, 6) is designed

to search in the local neighborhood of a starting

model for low-energy structures. The protocol

consists of multiple rounds of Metropolis Monte

Carlo with minimization (7); each trial consists

of a random perturbation of one or several

backbone torsion angles, fast side-chain opti-

mization using a rotamer representation (8, 9),

and a gradient-based minimization of the ener-

gy function with respect to backbone and side-

chain torsion angles. In this way, the continuous

space of backbone conformations and the dis-

crete set of side-chain packing arrangements

are searched simultaneously. Details on the en-

ergy function and methods are provided in (10).

Figure 1 and fig. S1 illustrate the challenge

of high-resolution de novo structure prediction.

All-atom refinement trajectories begun at the

native state produce models (refined natives)

that sample a deep near-native free-energy

basin. Although these structures typically have

lower all-atom energies than do non-native

structures, Rosetta de novo models—built from

an extended-chain starting conformation—do

not sample close enough to the native structure

to fall into this narrow energy well during all-

atom refinement. The narrow widths of the

native basins reflect the fact that nativelike

side-chain packing can be disrupted by even

relatively small backbone perturbations. Thus,

the critical step in high-resolution structure

prediction is generating low-resolution models

that are within the Bradius of convergence[ of

the native free-energy minimum using the all-

atom refinement protocol. This is challenging,

because the low-resolution search integrates out

the side-chain degrees of freedom to smooth

the energy landscape and hence lacks the detail

necessary to reliably discriminate nativelike

models, leading to false minima. We attempt

to overcome this problem by generating low-

resolution models for a large number of se-
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quence homologs in addition to the target

sequence. Each homolog has a slightly different

landscape in the low-resolution potential and

produces a characteristic set of models due to

variable hydrophobic patterning, loop lengths,

and local structural biases (fig. S2). Models for

each of the homologs are then mapped back to

the target sequence, producing a large and

structurally diverse starting population for all-

atom refinement.

This approach was first tested on prediction

target T0281 from the Sixth Critical Assessment

of Techniques for Protein Structure Prediction

(3) (CASP) experiment. Target 281 is a 70-

residue alpha-beta protein with predicted sec-

ondary structure consisting of an N-terminal

alpha helix, two or three beta strands, and two

additional alpha helices. Rosetta de novo

simulations with the target sequence generated

a family of topologies characterized by a two-

or three-stranded antiparallel sheet with alpha

helices packed on both sides. When sequence

homologs of the target were folded, several

new topologies were found in which the helices

packed together on one side of a three-stranded

beta sheet (11). We picked clusters of models

from both the target and the homologs for all-

atom refinement; models for homologs were

mapped back to the target sequence using the

Rosetta loop modeling protocol (12). The low-

energy models after all-atom refinement were

clustered, and the lowest energy member of

the largest cluster (which originated in simu-

lations of one of the sequence homologs) was

submitted as our first prediction (Fig. 2). When

the experimental structure was released, this

model was found to have a Ca-RMSD of 1.6 ),

making it perhaps the most accurate blind de

novo structure prediction in the history of the

CASP experiment.

To test this approach further, we constructed

a benchmark of 16 small proteins with relatively

deep multiple sequence alignments (Table 1)

(10). For each protein, 15 to 50 sequence

homologs were selected for folding, and low-

resolution models were built for each (10). The

sequence of the target protein was threaded

onto each model, and the structure was refined

with the all-atom refinement protocol described

above to generate 20,000 to 30,000 all-atom

models (round 1). To introduce additional di-

versity into the high-resolution search, we built

a second set of models (round 2) by refining

low-energy models from the first round with

sequences from close homologs and then

mapping back to the target sequence (10). The

all-atom energy and Ca-RMSD to native are

plotted for each population in figs. S4 and S5.

As a stringent test of the all-atom energy func-

tion, the single lowest energy model from each

round was identified and compared with the

native structure (Table 1, columns 5 and 6).

For five of the proteins, the lowest energy

model generated in either round 1 (three cases)

or round 2 (four cases) had a Ca-RMSD to the

native structure of less than 1.5 ). The ac-

curacy of the recapitulation of both the protein

backbone and the core side chains is illustrated

by structural superpositions of the lower RMSD

of the round 1 low-energy model and the round

2 low-energy model onto the corresponding

native structures (Fig. 3, A to E). Scatter plots

of Ca-RMSD versus all-atom energy are shown

in Fig. 3, G to K, and details on each of the

predictions are provided in the figure legend.

For 8 of the remaining 11 proteins, the lowest

energy round 1 or round 2 structure (six cases) or

one of the centers of the five largest clusters of

low-energy models (seven cases) were topolog-

ically correct, with Ca-RMSDs ranging from

1.5 to 5.0 ) (Table 1, columns 5 to 7), but the

native side-chain packing was not captured to

the extent shown in Fig. 3 (fig. S3, A to C). In

one of these cases, the second-lowest energy

model (fig. S3D) is quite accurate (Ca-RMSD

1.1 )). For seven of these eight cases (13), and

for all three of the remaining cases where topo-

logically correct predictions were not achieved,

Table 1. Benchmark proteins and results. Protein Data Bank (PDB) (18) or
Structural Classification of Proteins (SCOP) (19) ID is given in column 1 (10).
Protein length, fraction alpha helix, and fraction beta strand are given in columns
2 to 4. Ca-RMSD values for the model with the lowest all-atom energy in rounds

1 and 2 are given in columns 5 and 6, respectively (20). RMSD values calculated
over all heavy atoms in the protein core (21) are given in parentheses. Column 7
reports the best Ca-RMSD of the centers of the largest five clusters when the
low-energy models from round 1 are clustered.

ID L %a %b Round 1 Round 2 Cluster Protein name

1b72A 49 69 0 0.8 (0.8) 1.1 (0.9) 1.0 Hox-B1 homeobox protein
1shfA 59 5 40 11.1 (9.0) 10.8 (8.5) 10.9 Fyn tyrosine kinase
1tif_ 59 22 37 5.3 (2.3) 4.1 (2.8) 3.8 IF3-N
2reb_2 60 61 20 1.2 (0.9) 2.1 (1.6) 1.3 RecA
1r69_ 61 63 0 2.1 (2.4) 1.2 (1.5) 1.7 434 repressor
1csp_ 67 4 53 5.1 (4.5) 4.7 (4.2) 5.1 Cold-shock protein
1di2A_ 69 46 33 2.6 (2.3) 2.6 (2.2) 1.9 RNA binding protein A
1n0uA4 69 43 24 9.9 (8.3) 10.2 (8.1) 2.7 Elongation factor 2
1mla_2 70 34 37 8.4 (7.3) 8.7 (8.1) 7.2 Malonyl-CoA ACP transacylase
1af7__ 72 72 0 10.1 (7.9) 10.4 (8.1) 1.7 Cher domain 1
1ogwA_ 72 26 33 2.7 (2.3) 1.0 (1.0) 2.6 Ubiquitin
1dcjA_ 73 31 27 3.2 (2.2) 2.5 (2.4) 2.0 Yhhp
1dtjA_ 74 39 27 1.0 (0.8) 1.2 (0.9) 1.8 KH domain of Nova-2
1o2fB_ 77 38 27 10.1 (8.7) N/A 10.3 Glucose-permease IIBC
1mkyA3 81 32 24 3.2 (3.6) 6.3 (6.1) 3.7 Enga
1tig_ 88 35 35 4.1 (4.2) 3.5 (3.4) 2.4 IF3-C
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Fig. 1. Free-energy landscape for the small
protein barstar (PDB code 1a19). Rosetta all-
atom energy ( y axis) is plotted against Ca-RMSD
(x axis) for models generated by simulations
starting from the native structure (refined
natives, blue points) or from an extended chain
(de novo models, black points). The free-energy
function includes the entropic contribution to
the solvation free energy but not the configura-
tional entropy.

Fig. 2. 1.6 Å Ca-RMSD blind structure prediction
for CASP6 target T0281, hypothetical protein
from Thermus thermophilus Hb8. Superposition
of our first submitted model for this target in
CASP6 (blue) with the crystal structure (red;
PDB code 1whz) showing core side chains. This
figure was generated in PyMOL (22).
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the failure to achieve high-quality models is

due to inadequate conformational sampling.

The worst of the predictions (Fig. 3F) illustrates

this sampling problem: Although refined native

structures have lower energies than the de novo

models (Fig. 3L), there is no sampling in the

native basin and a false minimum is selected.

The high accuracy of the models shown in

Fig. 3, A to E, is encouraging and, along with

recent success in protein design and protein-

protein docking (4, 14–16), suggests that the

Rosetta all-atom potential may capture the key

forces contributing to the stability of small,

globular proteins. In particular, the emphasis on

van der Waals interactions and hydrogen

bonding and the neglect of long-range electro-

statics support the view that conformational

specificity is provided in large part by short-

range interactions, primarily the jigsaw puzzle–

like complementary packing in the protein core.

The free-energy landscapes in Figs. 1 and 3,

together with the ability to make predictions

with Ca-RMSDs under 1 ), suggest that con-

formational sampling in solution in the protein

core may be restricted to a narrow ensemble

centered near the crystal structure.

On the other hand, because high-accuracy

models were selected for only a third of the

proteins in the test set, further improvements in

both the sampling methodology and the free-

energy function are clearly necessary for con-

sistent and reliable de novo structure prediction

of small proteins. Conformational sampling re-

mains the primary stumbling block, as high-

lighted by the lack of models with Ca-RMSDs

G2.5 ) for most of the failures in our test set

and the fact that the refined natives (blue points

in Figs. 1 and 3 and figs. S1, S2, S4, and S5)

generally have lower energies than the vast

majority of de novo generated models. Im-

provements in sampling that reduce overcon-

vergence in the low-resolution search should

also eliminate the dependence on simulations

with homologous sequences to adequately

cover conformational space.

Fig. 3. High-resolution de novo
structure predictions. (A to F) Super-
position of low-energy models (blue)
with experimental structures (red)
showing core side chains. (G to L)
Plots of Ca-RMSD (x axis) against all-
atom energy ( y axis) for refined
natives (blue points) and the de novo
models (black points). Red arrows
indicate the lowest energy de novo
models, shown in [(A) to (F)]. [(A)
and (G)] Hox-B1. In the lowest
energy model (A) from round 1, the
aromatic side chains, particularly the
central phenylalanine, overlay almost
perfectly. The all-atom refinement
step reduced the model Ca-RMSD
to the native structure from 1.5 Å to
0.8 Å. [(B) and (H)] Ubiquitin. In the
lowest energy model (B) from round
2, almost all of the core side chains
overlay well, including the central
partially buried lysine. [(C) and (I)]
RecA. The lowest energy model from
round 1 (C) has nearly all the core
side chains in place; the RMSD versus
energy plot (I) exhibits a broad
funnel . [(D) and (J)] KH domain of
Nova-2. A loop for which density is
missing in three of four monomers in
the crystal structure of the tetramer
packs more closely on the rest of the
protein in the low RMSD models
than in the native monomer, in
which the density was interpretable,
and is responsible for the lower than
native energy of models in the native
basin (J). The lowest energy model
after round 1 (D) has a Ca-RMSD to
native of 1.0 Å with the omission of
this loop, which is involved in RNA
binding. [(E) and (K)] 434 repressor.
The lowest energy model after round
2 (E) has a Ca-RMSD of 1.3 Å despite
consistent errors in the population in
one of the loops. The lowest energy
models for the remaining 11 proteins
in our test set were much less ac-
curate, with side-chain packing and,
in some cases, the fold incorrect. The
lowest energy round 1 structure (F)
for the Fyn Tyrosine kinase replaces
the native diverging turn with an
additional hairpin (Ca-RMSD 11.1Å);
de novo models fail to sample the deep energy minimum near the native structure (L). [(A) to (F)] were created in PyMOL (23) and [(G) to (L)] with
gnuplot (www.gnuplot.info).
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What are the prospects for high-resolution

protein structure prediction more generally? First,

protein core prediction may be a fundamentally

easier problem than prediction of the detailed

structures of functionally relevant parts of

proteins, such as active sites where buried

charged and polar interactions are more common

(17). Second, the computational cost of high-

resolution refinement is expected to increase

dramatically with chain length, and hence the

refinement of models of large proteins is likely

to require orders of magnitude more computing

power than the È150 CPU days required for

each of the predictions in this paper. Although

our results are encouraging, consistent and

reliable high-resolution modeling of protein

structure remains a formidable challenge.
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Azathioprine and UVA Light
Generate Mutagenic

Oxidative DNA Damage
Peter O’Donovan,1 Conal M. Perrett,1,3 Xiaohong Zhang,1,2

Beatriz Montaner,1 Yao-Zhong Xu,2 Catherine A. Harwood,3

Jane M. McGregor,3 Susan L. Walker,4

Fumio Hanaoka,5 Peter Karran1*

Oxidative stress and mutagenic DNA lesions formed by reactive oxygen species
(ROS) are linked to human malignancy. Clinical treatments inducing chronic
oxidative stress may therefore carry a risk of therapy-related cancer. We suggest
that immunosuppression by azathioprine (Aza) may be one such treatment. Aza
causes the accumulation of 6-thioguanine (6-TG) in patients’ DNA. Here we
demonstrate that biologically relevant doses of ultraviolet A (UVA) generate
ROS in cultured cells with 6-TG–substituted DNA and that 6-TG and UVA are
synergistically mutagenic. A replication-blocking DNA 6-TG photoproduct,
guanine sulfonate, was bypassed by error-prone, Y-family DNA polymerases in
vitro. A preliminary analysis revealed that in five of five cases, Aza treatment
was associated with a selective UVA photosensitivity. These findings may partly
explain the prevalence of skin cancer in long-term survivors of organ
transplantation.

The thiopurines azathioprine (Aza), 6-mercap-

topurine (6-MP), and 6-thioguanine (6-TG) are

cancer therapeutic and immunosuppressive

agents. They are all prodrugs (compounds that

the body converts into active drugs) requiring

metabolic activation into the thioguanine nu-

cleotides (TGNs) that are precursors for 6-TG

incorporation into DNA (1). Experimentally,

6-TG is a surrogate for Aza because it by-

passes many of the activation steps and is

directly converted to TGN. The normal DNA

bases do not absorb significantly at ultra-

violet A (UVA) wavelengths (320 to 400 nm),

whereas thiopurines do, and 6-TG has an ab-

sorbance maximum at 342 nm. 6-MP generates

ROS when exposed to UVA (2). ROS are per-

nicious DNA-damaging agents (3), and although

cells are equipped to deal with them, abrupt

increases in ROS cause oxidative stress and

produce mutagenic DNA lesions (4). The pos-

sibility that DNA 6-TG might act as an en-

dogenous UVA chromophore and provide a

source of promutagenic oxidative DNA dam-

age prompted us to investigate the photochem-

ical properties of 6-TG and the biological

consequences of the interaction between DNA

6-TG and UVA.

HCT116 human colorectal carcinoma cells

are mismatch repair–defective and tolerant of

high levels of DNA 6-TG (5). We found that

UVA generated intracellular ROS in 6-TG–

treated HCT116 cells in which 6-TG replaced

approximately 0.2% of DNA guanine. After

uptake of CM-H2DCFDA dye and irradiation

with UVA (3 kJ/m2) Eapproximately equiva-

lent to 1 to 2 min of exposure around noon in

England at midsummer (6)^, the cells emitted a

green fluorescence indicating the formation

of ROS. This was detected by fluorescence-

activated cell sorting and by microscopy (Fig.

1A). Because ROS are highly unstable, they
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