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Protein—protein docking algorithms provide a means to elucidate struc-
tural details for presently unknown complexes. Here, we present and
evaluate a new method to predict protein—protein complexes from the
coordinates of the unbound monomer components. The method employs
a low-resolution, rigid-body, Monte Carlo search followed by simul-
taneous optimization of backbone displacement and side-chain confor-
mations using Monte Carlo minimization. Up to 10° independent
simulations are carried out, and the resulting “decoys” are ranked using
an energy function dominated by van der Waals interactions, an implicit
solvation model, and an orientation-dependent hydrogen bonding poten-
tial. Top-ranking decoys are clustered to select the final predictions.
Small-perturbation studies reveal the formation of binding funnels in 42
of 54 cases using coordinates derived from the bound complexes and in
32 of 54 cases using independently determined coordinates of one or
both monomers. Experimental binding affinities correlate with the calcu-
lated score function and explain the predictive success or failure of many
targets. Global searches using one or both unbound components predict
at least 25% of the native residue-residue contacts in 28 of the 32 cases
where binding funnels exist. The results suggest that the method may
soon be useful for generating models of biologically important complexes
from the structures of the isolated components, but they also highlight the
challenges that must be met to achieve consistent and accurate prediction
of protein—protein interactions.
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Introduction

fundamental test of our understanding of the
energetics of macromolecular interactions, as the

The protein docking problem, that is, the task of
assembling two separate protein components into
their biologically relevant complex structure, is
important for several reasons. First, it is of extreme
relevance to cellular biology, where function is
accomplished by proteins interacting with them-
selves and with other molecular components.
Second, the protein docking problem presents a
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native complex structure is almost certainly at a
global free energy minimum. Finally, an important
post-genomic goal is the characterization of the
structures of protein—protein complexes, and com-
putational tools offer an inexpensive means to
carry out large-scale studies.

Protein—protein docking has been studied for
some time now, and there are several excellent
review articles available.'~®> Many early and current
docking strategies involve grid-based search
algorithms.* "' These algorithms are quite success-
ful at joining the components of a separated
complex because of the excellent shape comple-
mentarity at the interface. However, proteins and
protein interfaces are flexible, and the confor-
mations of the bound partners often differ from
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those of the isolated components. If the unbound
monomer components are used, it is no longer
trivial to match the shapes together. Strategies to
address this include softening the interface or
coarsening the grid to allow more uncertainty in
the matching process.>'*'* Chemical and physical
information can be incorporated by including this
information while matching the surfaces.®'*''*
Finally, some algorithms explicitly include side-
chain flexibility, although in most cases in only
one of the protein partners.””~"” Accurate and con-
sistent prediction of correct complex structures
from unbound components remains elusive, and
few algorithms have been tested on large sets of
targets.>'*"

Recent large-scale studies have examined up to
27 targets. Ferndndez-Recio et al.'” tested their
method on unbound components using soft dock-
ing with side-chain refinement, localizing the
search space to one-half of the receptor. Their
algorithm admirably found correct solutions in the
top 20 models in 17 of 24 cases, including seven of
11 protease-inhibitor cases for which the top-
ranked solution was correct. Palma ef al.® similarly
found correct solutions of rank 20 or less in 14 of
25 cases (bound, semi-bound and unbound) using
a soft docking algorithm designed to capture side-
chain flexibility. Chen & Weng'* used target func-
tions that are tolerant of conformational change to
study 27 systems; they predicted 12 structures
within the top 20 ranked decoys, and three systems
for which the correct solution was top-ranked.
While these results are encouraging, current search
algorithms are not sufficient to efficiently explore
conformational space, and free energy functions
are unable to consistently recognize correct com-
plexes. There are still unsolved problems in the
field of protein—protein docking, and insight
could come from new approaches.

Like protein docking, protein folding requires a
vast search and an accurate free energy or scoring
function. Recently, progress has been noted in
single-protein, ab initio structure prediction
algorithms.” In particular, the Rosetta program
developed at the University of Washington is now
able to construct crude (~5 A) models of many
short (less than 150 amino acid residues) protein
sequences.” This progress has emerged through
the application of the following core philosophies
and techniques. Physical forces are modeled when-
ever possible, but they are parameterized using
data from high-resolution protein structures
(rather than small molecules, as in traditional
molecular mechanics approaches). The sampling
problem is attacked with supercomputing clusters
to create very large numbers of decoys. Residue-
scale potential functions and backbone fragments
are used to enable faster computation and to
average interactions over long length and time-
scales during the initial search of conformational
space.”””! Physically based all-atom potentials are
then used for refinement of decoys and accurate
discrimination.” Finally, algorithm convergence,

as measured by solution degeneracy after decoy
clustering, is used as a final criterion in decoy
selection.”

In this work, we adapt and expand the Rosetta
techniques and philosophies for the protein—
protein docking problem. Our algorithm includes
a fast search using low-resolution potentials
followed by an atomic-scale refinement step incor-
porating simultaneous optimization of side-chain
positions and rigid-body displacement. The pro-
cess mimics the steps involved in a diffusional
encounter between two macromolecules, although
the treatment is certainly not a rigorous physical
simulation. Scoring functions include both physical
and physically inspired statistical potentials
derived from structures in the Protein Data Bank
(PDB).* We employ small-perturbation studies to
examine the quality of the scoring function. We
use backbones of bound complexes to tune the
algorithm, but we extend also to unbound com-
plexes. Finally, we perform global searches using
only the unbound component structures, emulat-
ing the situation of a blind search application.

A preliminary version of our protocol performed
respectably in the opening rounds of the CAPRI
challenge.**"** Since then, the protocol has been
developed further, and here we present a complete
description of the algorithm plus rigorous tests of
its performance. Our goals are to develop a search
strategy appropriate for global searches on
unknown structural targets, and to assemble and
optimize an energy function capable of differentiat-
ing decoys close to the native structure from those
far away.

Results
Docking algorithm

Figure 1 shows a flowchart of the method.
Creation of a decoy begins with a random orien-
tation of each partner and a translation of one
partner along the line of protein centers to create
glancing contact between the proteins. In the first
stage of the algorithm, we employ a rigid-body
Monte Carlo search, translating and rotating one
partner around the surface of the other through
500 Monte Carlo move attempts. Step sizes are
adjusted continually to maintain a 50% move
acceptance rate, with initial Gaussian perturbation
sizes of mean value 0.7 A (along all three axes)
and 5° (spin around the axis of protein centers and
tilt off this axis in a randomly-chosen direction).
The low-resolution, residue-scale interaction poten-
tials®**' are based on a Bayesian expansion of the
probability of the correctness of each decoy. These
potentials include residue environment and resi-
due-residue interaction terms derived from a data-
base of interfaces, a score to reward contacting
residues, a penalty for overlapping residues and, for
antibody targets, an alignment score to direct the
interface toward the complementarity-determining
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loops. All scores at this stage are based on a
reduced representation of the amino acid residues
based on side-chain centroid positions.” These
scores are described in detail in Materials and
Methods.

After the low-resolution search, explicit side-
chains are added to the protein backbones using a
backbone-dependent rotamer packing algorithm.*”
Rotamer choices are created from nine x; angles
(three major rotamer angles and each of those
angles plus and minus the standard deviation of
that angle), three x, angles (major rotamer angles),
plus major rotamer options for x; and x; angles
for appropriate residue types.”® Polar hydrogen
atoms are placed for use in hydrogen bond for-
mation. The optimal combination of rotamers is
found using a simulated-annealing Monte Carlo
search.

Once the proteins have side-chains, the rigid-
body displacement is optimized. The gradient of
the scoring function determines the starting direc-
tion (in the rigid-body translation/rotation space)
for a sequence of line minimizations. The
Davidon-Fletcher—Powell quasi-Newton minimiz-
ation technique® finds the local minimum of the
energy function to within a given tolerance, here a
loose 1.0 scoring unit.

To simultaneously optimize the side-chain con-
formations and the rigid-body position, the side-
chain packing and minimization operations are
repeated 50 times (Figure 2). Before each cycle, the
position of one protein is perturbed by random
translations of mean 0.1 A in each direction of
Cartesian space and by random rotations of mean
0.05° around each Cartesian axis. After each move,
packing, and minimization, a score is calculated.
The new position is kept or rejected according to
the standard Metropolis acceptance criterion.™

@ Reject

Clustering Figure 1. Docking protocol.
(a) Process flowchart; (b) detail of

the refinement stage.

After the final cycle, the lowest-scoring confor-
mation is minimized once more to a fine tolerance
of 0.02 scoring unit. The repetition of rigid-body
and side-chain conformational moves is new to
this work; the predictions for the first CAPRI
experiments were completed with a preliminary
version of the protocol.*

Several measures are taken to ensure compu-
tational efficiency during these repeated cycles.
First, the side-chain packing algorithm usually
varies the conformation of only one residue at a
time while keeping the other side-chains fixed; a

Random
perturbation

packing

\

Figure 2. The voyage over the free energy surface
during one refinement cycle. The steps are: (1) a random
perturbation (rigid-body translation and rotation) moves
the structure on the potential surface; (2) a packing step
optimizes the side-chain positions, thus changing the
energy surface; (3) an explicit minimization finds the
nearest local minimum accessible via a rigid-body trans-
lation and rotation. Start and finish positions are com-
pared by the Metropolis criterion, and the cycle is
repeated 50 times.

minimization
FINISH
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full, combinatorial rotamer optimization is per-
formed only once every eight cycles. Second, a
filter is employed periodically to detect inferior
decoys and reject them without further refinement:
decoys are discarded if the alignment profile deter-
mines that the interface contains two or more for-
bidden residues (Materials and Methods), or if the
score is not within 500, 10, and 5 scoring units of a
reference score before the first minimization cycle,
after the first minimization cycle, and after five
minimization cycles, respectively. The reference
score is the maximum score of the top 1% of 5000
decoys created in a calibration run.

In the packing and minimization refinement
steps and for decoy discrimination, the full-atom
scoring function includes van der Waals inter-
actions with the repulsive part of the potential
partially replaced with a linear term to avoid
singularities; solvation using a pair-wise Gaussian
solvent-exclusion model;>® hydrogen bonding
energies using an orientation-dependent function
derived from high-resolution protein structures;*
a rotamer probability term;”** residue-—residue
pair interactions derived statistically from a data-
base of protein structures;” a simple electrostatic
term; and a surface area and atomic solvation
term (for decoy discrimination only, due to the
expense of calculation).”® While the weights of
most of the terms in the scoring function are of
the same order of magnitude, the dominant contri-
butions to discrimination are the van der Waals
(packing) interactions, followed by solvation. Full
scoring functions and their respective weights and
contributions are detailed in Materials and
Methods.

The search procedure is repeated to create
approximately 10° decoys per target. Each final
decoy is rescored, reducing the weight on the
repulsive van der Waals energy term and including
the surface area-based solvation term. The 200
best-scoring decoys are then clustered on the basis
of pair-wise root-mean-squared distance (rmsd)
using a hierarchical clustering algorithm.** Struc-
tures within a 2.5A clustering threshold are
designated as a set, and the lowest-scoring decoy
within the set represents that position. The clusters
with the most members are selected as the final
predictions, ranked according to the cluster sizes.
The cluster size, or the degeneracy of the docked
position, may be related to the entropy of the
bound complex.

In addition to the global docking searches, we
performed perturbation studies to explore the
nature of the docking energy funnel. These studies
were performed on both bound complexes with
native side-chain conformations removed and on
unbound monomer components superimposed on
the native, bound complex structures. Random
starting positions are created by translating one
protein partner by Gaussian random distances of
3 A standard deviation along the line of protein
centers and 8 A standard deviation in the two per-
pendicular directions, and by spinning the mobile

partner by a Gaussian random angle of 8° standard
deviation around the axis of centers and by tilting
a Gaussian random angle of 8° standard deviation
off the axis in a random direction. In this way, a
set of 1000 random starting positions create a dif-
fuse cloud that covers a reasonable area (~20 A
radius rmsd) with moderate density around the
native ligand position. In the perturbation runs,
the filtering and clustering steps are omitted.

Calculations were performed on computer
clusters of approximately 50-processor Linux
workstations with clock speeds near 1 GHz. Sets
of 1000 perturbation decoys were created in one-
half to two hours of cluster time per target. Com-
plete processing of global searches (~10° decoys)
required between one-half and two days of cluster
time for each of the 54 targets, for a total comput-
ing time exceeding eight processor-years.

Perturbation studies

The docking problem requires two components:
first, a search strategy must be able to create good
decoys, and second, a scoring function must be
able to differentiate structures close to and far
from the native structure. To assess the accuracy
of the scoring function somewhat independently
of the search problem, we generated sets of struc-
tures enriched for near-native conformations by
seeding the protocol with perturbed native struc-
tures, where the reference structure is either the
bound complex itself or one or both unbound com-
ponent(s) optimally superimposed upon on the
bound complex coordinates. In both cases, the
native crystal structure side-chain conformations
were removed and regenerated by the program.

Bound backbones

Figures 3—-5 show the results from various per-
turbation studies on the major classes of interfaces
in Chen et al.’s benchmark set.”® For each target,
the all-atom score of 1000 decoys is plotted as a
function of the rmsd from the native structure (cal-
culated over the C* atoms of the smaller docking
partner in the fixed coordinate frame of the larger
partner). If the search algorithm and scoring func-
tions are successful, we expect that the lowest-
scoring decoys will have low rmsds, creating a
score “funnel.” Indeed, in many cases funnels are
apparent, and the widths of the binding funnels
range from 2A to 6 A rmsd. To quantify the
presence of the funnel, we examine the five lowest-
scoring decoys for each target. If three or more of
those decoys are within 5 A rmsd of the native
structure, we say that the target exhibits a score
funnel (Table 1). Of the 54 benchmark targets, 42
have funnels, including 21 of 22 enzyme-inhibitor
pairs and ten of 16 antibody-antigen pairs
(Table 2). Note that this is not the typical, trivial
bound-bound docking problem: we have removed
all side-chain information before starting the proto-
col. Therefore, although the perturbation studies
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Enzyme/Inhibitor Complexes
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Figure 3. Perturbation studies on enzyme/inhibitor complexes. Plots show rmsd versus score for 1000 decoys created
from random starting positions near the native structure. Bound indicates that backbone coordinates were taken from
the bound complex; Unbound indicates that backbone coordinates were taken from one or both unbound monomer
components. (X) Native structure, () native backbones with side-chains replaced using the algorithm, ([J) that
position after rigid-body minimization, (') after 50 cycles of packing and minimization, i.e. equivalent to the high-
resolution refinement algorithm as applied to the docking decoys. Here and in subsequent Figures and Tables,
asterisks (*) indicate targets for which only one unbound monomer structure is known.
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Antibody/Antigen Complexes
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Figure 4. Perturbation studies on antibody/antigen complexes. See the legend to Figure 3.

were designed to isolate the score function
problem, they also test the ability of the search
algorithm to find the correct rigid-body displa-
cement and side-chain conformations. In most
cases, the program is able to re-create near-cor-
rect conformations. However, in some cases the
search can be limiting: when we attempted per-
turbation studies on the antibody/antigen tar-
gets in which the antibody side-chains were
fixed in the native positions (as given in the
recent CAPRI experiment®), the number of fun-
nels rose from ten to 14 of 16 cases. Therefore,
finding correct side-chain packing is an issue
in a few of the cases lacking funnels.

The native complex must have lower free energy
than the many alternative decoy complexes, and
this provides a test of the quality of the score func-
tion. In most cases, particularly those where

funnels are present, the native structure scores as
well as the best decoys or better (Figures 3-5).
Scores are shown for three stages of refinement of
the native structure: after removing the side-chains
and replacing them with an optimal combination
of rotamers, after performing a single rigid-body
minimization on the repacked structure, and after
performing a complete set of 50 refinement cycles
in a treatment identical with that used for decoys.
Typically, the minimization step improves the
score by a small amount (0-2 score points), and
the repeated refinement improves the score
significantly more (1-10 + points). The difference
between the native structure score and that with
repacked side-chains, however, can be either
positive or negative (and often of substantial
absolute value, typically 20 points). Some
unusually high-scoring native structures (e.g.
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Figure 5. Perturbation studies on difficult and other complexes. See the legend to Figure 3.

1AHW or 1QFU), contain side-chains with non-
standard x angles that receive poor rotamer
probability scores and result in artificially poor
rankings. More often, the native structures exhibit
exceptionally good packing, which is difficult to
achieve in model structures, and even the optimal
rotamer combination is not close to the native
score (e.g. INCA). Finally, it should be noted that
the refined native structure represents one of the
best scores of which the program’s refinement
protocol is capable of generating, and its score
relative to that of the other (false positive) decoys
indicates whether correct solutions are possible to
detect at all.

Figure 6 shows experimentally-measured bind-
ing affinities for targets for which they are

available and correlates them with the difference
in the score between the lowest-rmsd decoy from
the bound perturbation studies and a reference
score calculated when the two partners are in iso-
lation. Targets that do and do not create funnels
are noted. Funnels are observed consistently for
targets with binding affinities K, above approxi-
mately 10"M™' or, equivalently when the score
difference exceeds 19 units. Furthermore, failures
seem to be explained by their low binding affi-
nities, below the level of uncertainty in the scoring
functions. It is intriguing that the complexes for
which clear binding funnels are not observed are
the very low-affinity complexes: first, this suggests
that the scoring function has some relation to the
actual free energy function, and second, it suggests
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Table 1. Summary of the docking of bound and unbound components from perturbation studies and global searches

Perturbation studies

Bound Unbound Global searches
i . Best Best R . Best Best
PDB N5A NI0A N25C contacts rmsd R5A R10A R75C R50C R25C RO1C contacts rmsd

A. Enzyme/inhibitor complexes

1ACB 5- 2 1 0.462 9.08 >25 14 >25 14 14 5 0.051 11.84
1AVW 5 5 5 0.723 6.11 >25 2 >25 2 2 2 0.702 5.76
1BRCT 5- 1 2 0.938 3.76 >25 >25 >25 >25 >25 9 0.156 15.96
1BRS 4- 4- 4- 0.667 3.89 >25 2 >25 23 2 1 0.389 8.67
1CGI 5 4- 4- 0.377 3.15 2 2 >25 >25 2 1 0.415 3.27
1CHO 5- 3 3- 0.525 5.61 >25 2 >25 >25 2 2 0.425 6.88
1CSE 5 2 0 0.233 8.65 >25 7 >25 >25 24 1 0.186 8.87
1DF] 5 4- 4- 0.581 3.92 >25 >25 >25 >25 >25 2 0.023 22.09
1FSS 5- 5. 5- 0.682 2.98 5 5 >25 5 5 1 0.636 3.19
IMAHY 5 5 5- 0.744 2.36 1 1 >25 1 1 1 0.641 2.40
1TGSY 5- 5. 5- 0.688 1.39 2 2 >25 2 2 1 0.562 3.31
1UGH 5 5. 4- 0.676 1.69 1 1 >25 1 1 1 0.595 2.15
2KAIY 0 4- 4- 0.881 2.04 1 1 1 1 1 1 0.833 2.40
2PTC 5- 2 2 0.872 0.98 >25 >25 >25 >25 >25 5 0.179 10.35
2SIC 5- 5. 5- 0.841 241 2 2 2 2 2 2 0.818 2.98
2SNI 5- 4- 4- 0.881 1.61 7 5 7 5 5 1 0.857 1.36
1PPE*f 5- 5- 5- 0.881 0.61 2 1 >22 2 1 1 0.738 0.59
1STF*§ 5 5 5- 0.897 1.31 3 3 3 3 3 3 0.795 0.56
1TAB*f 5 5 5- 0.727 3.67 1 1 >25 1 1 1 0.636 3.35
1UDI*¢ 5- 5- 5- 0.694 1.16 8 2 >25 2 2 2 0.500 3.75
2TEC*} 5 5. 5 0.810 2.25 3 3 >25 3 3 1 0.690 2.09
4HTC*  5- 5. 5- 0.591 3.81 1 1 >25 1 1 1 0.591 3.84
B. Antibody/antigen complexes

1AHW 5 5 5 0.533 6.17 >25 3 >25 >25 3 1 0.489 7.24
1BVK 0 5 0 0.241 6.25 >25 1 >25 6 3 1 0.517 6.15
1DQJ 4- 2 2 0.347 5.86 >25 >25 >25 >25 >25 20 0.000 17.75
1IMLC 4- 0 0 0.182 18.89 6 6 >25 6 6 1 0.515 2.52
1WEJ 0 0 2 0.250 10.65 >25 >25 >25 >25 >25 2 0.031 17.90
1BQL* 4- 5- 5- 0.794 1.40 1 1 >25 1 1 1 0.676 2.09
1EO8* 0 1 4- 0.406 7.38 >25 >25 >25 >25 >25 1 0.062 56.51
1FBI* 5- 3 3- 0.545 2.71 18 18 >25 18 18 2 0.030 2225
1IAT*F 2 0 1 0.306 14.11 >25 >25 >25 >25 >25 >25 0.000 33.96
1JHL* 0 1 0 0.217 8.56 >25 15 >25 >25 15 1 0.174 14.91
IMEL*}  5- 5. 5- 0.528 5.38 >25 1 >25 8 1 1 0.556 5.80
INCA* 3 5 5 0.750 1.24 >25 >25 4 4 4 1 0.750 31.47
INMB*+ 4- 5 5 0.818 0.65 13 13 >25 >25 >25 2 0.030 72.48
1QFU* 5- 5- 5- 0.636 2.00 4 4 >25 4 4 4 0.515 3.20
2JEL* 3 5 4- 0.727 471 6 1 10 3 1 1 0.848 1.45
2VIR* 0 4- 1 0.483 6.12 >25 25  >25  >25  >25 7 0172 4147
C. Other complexes

1AVZ 1 0 0 0.080 10.14 >25 >25 >25 >25 >25 19 0.000 20.03
1IMDA 0 3 0 0.083 7.86 >25 >25 >25 >25 >25 19 0.000 53.71
1WQ1 5- 3- 4- 0.511 3.99 >25 23 >25 23 23 13 0.000 44.03
2PCC 0 3 1 0.444 7.28 >>25 >25 >25 >25 >25 8 0.056 19.07
1A00* 0 1 4- 0.478 8.22 >25 10 >25 >25 1 1 0.391 5.08
1ATN* 5- 5. 5- 0.875 0.96 1 1 1 1 1 1 0.800 2.30
1GLA* 0 1 1 0.737 5.95 >25 >25 >25 >25 >25 9 0.158 25.66
1IGC* 5- 2 2 0.875 1.92 >25 >25 >25 >25 >25 3 0.062 24.19
1SPB* 5- 5. 5- 0.733 091 4 4 >25 4 4 4 0.717 1.32
2BTF* 4- 4- 4- 0.762 1.90 >25 >25 >25 >25 >25 4 0.119 27.52
D. Difficult test cases

1BTH+ 5- 0 1 0.254 18.23 >25 >25 >25 >25 >25 3 0.017 16.96
1FIN 5 0 0 0.125 16.56 >25 >25 >25 >25 >25 4 0.014 26.84
1FQ1 5- 2 2 0.387 9.61 >25 >25 >25 >25 >25 16 0.000 24.64
1GOT 5 0 0 0.062 19.27 22 22 >25 >25 >25 1 0.094 55.84
1EFU* 5 0 0 0.087 10.64 16 16 >25 >25 >25 12 0.000 29.51
3HHR* 5- 0 0 0.041 10.75 >25 >25 >25 >25 >25 >25 0.000 33.90
Totals 42/54 34/54 32/54  43/54 45/54 20/54 28/54 7/54  23/54 28/54  46/54 28/54 28/54
tSubset 13/16 13/16 12/16 16/16 14/16 10/16 11/16 2/16 11/16 11/16 15/16 11/16 11/16

For the perturbation studies on bound backbones, N5A is the number of the top five decoys (by all-atom score) that have rmsd
<5 A. For the perturbation studies on unbound components, N10A is the number of the top five decoys that have rmsd <10 A,
N25C is the number of the top five decoys that correctly predict more than 25% of native residue-residue contacts, best contacts is
the best fraction of native residue—residue contacts in the top five decoys, and best rmsd is the best rmsd in the top five decoys. For
global unbound searches: R5A and RI0A are the ranks of the first clusters with rmsd <5 A or <10 A, respectively; R75C, R50C,
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Table 2. Correct predictions by interface type

All Unbound-unbound Semibound
BB-p XU-p XU-g BB-p UU-p UU-g BB-p BU-p BU-g
Enzyme/inhibitor 21/22 18/22 17/22 15/16 12/16 11/16 6/6 6/6 6/6
Antibody/antigen 10/16 9/16 8/16 3/5 1/5 3/5 7/11 8/11 5/11
Other 5/10 5/10 3/10 1/4 1/4 0/4 4/6 4/6 3/6
Difficult 6/6 0/6 0/6 4/4 0/4 0/4 2/2 0/2 0/2
Total 42/54 32/54 28/54 23/29 14/29 14/29 19/25 18/25 14/25

BB-p denotes bound perturbation studies; UU-p, BU-p and XU-p denote perturbation studies on unbound, semibound, and all tar-
gets; and UU-g, BU-g, and XU-g denote global searches on unbound, semibound, and all targets. XU in columns two and three indi-
cates that unbound coordinates were used for both partners for the 29 targets (columns 4-6) for which they were available, and for
one of the two partners for the 24 targets (columns 7-9) where only one uncomplexed structure was available. Successful perturbation
runs have three of five top-scoring decoys with rmsd <5 A (BB) or three of five top-scoring decoys with greater than 25% contacts
(UU or BU). Global search success means that a decoy of rank 10 or less contains at least 25% of correct native residue—residue

contacts.

that the method could ultimately be useful in
determining whether two proteins of known
structure interact with high affinity.

Unbound backbones

Using coordinates from independently deter-
mined X-ray structures, score funnels still exist for
many of the targets (Figures 3-5), although not as
frequently. The “unbound” problem is consider-
ably more difficult (and more realistic) than the
bound component problem, as there may be sig-
nificant changes in backbone conformation upon
binding and hence the unbound components may
have much less of a lock-and-key fit than the
bound components.

Unbound perturbation funnels are quantified by
counting structures that either have rmsd less
than 10 A or, alternatively, a native residue-resi-
due contact fraction above 25% (a residue—residue
contact is identified when any of the inter-residue
atom—atom distances is less than 4 A, excluding
hydrogen atoms). Table 1 shows the number of
decoys meeting these criteria among the five top-
scoring decoys from the unbound perturbation
studies. In addition, the Table lists the best rmsd
and best fraction of native residue—residue con-
tacts found in the five top-scoring decoys. Of the
54 targets, 32 display funnels as measured by the
25% contact fraction measure. Since the pertur-
bation studies are designed to sample the configur-
ation space close to the native structure, this
measure represents an upper limit to the fraction
of successes expected from the protocol in a global
search.

Scores for the unbound “native” structures are
based on the conformation created by superimpos-
ing the unbound monomer components onto the

bound complex.*® Sometimes, this superposition
does not create a good match at the interface
(even after repacking the side-chain confor-
mations); however, once refined, the structure can
provide a much better scoring target. For example,
the unbound “native” antigen/antibody pair
1AHW moves 8 A upon refinement, and the score
drops over 50 points to the level of the bottom of
the potential well. For this reason, a 10 A limit is
more realistic to detect the presence of a score
funnel.

Global searches using unbound components

The results for global searches on the 54 targets
from fully randomized starting positions are
detailed in Table 1, using rmsd or the fraction of
correct native residue-residue contacts. Ranks of
the first predicted structure (after clustering,
ranked by cluster size) that meet the given criteria
reveal the performance of the algorithm. The
native residue—residue contact fraction measures
whether specific interactions occur and is a fairly
strict test: of the 32 cases for which binding funnels
exist, only seven predict at least 75% of the native
contacts correctly in a model of rank 10 or less.
However, 23 of 32 cases predict at least 50% of the
contacts, and 28 cases predict more than 25%.
Finally, even when a high level of detail is not
predicted, our algorithm quite often (in 46 cases)
produces a structure of rank 10 or less that has
enough of the interface patches matched to make
at least one correct contact. The scoring functions
are sensitive enough to detect the general recog-
nition region. We can measure the results by
rmsd, although this is not the most precise
measure, since it relies on the imperfect super-
position of backbones. A total of 20 targets can be

R25C and ROIC are the ranks of the first clusters with more than 75%, 50%, 25% and 1% of native residue—residue contacts; best
contacts is the best fraction of native residue—residue contacts in the top ten clusters; and best rmsd is the best rmsd in the top ten
clusters. Totals count either the number of targets that have top five measures (N5A N10A, N25C) greater than or equal to 3 (indicated
by *), rank measures (R5A, RIOA R75C, R50C, R25C, ROIC) less than or equal to 10, best contacts greater than or equal to 0.25, or best
rmsd less than or equal to 10 A. The independent subset totals on the bottom line include the targets, indicated with a dagger (%),

which were not used in determining the score weightings.
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Figure 6. Negative logarithm of the experimental bind-
ing equilibrium constant, K,, versus the difference in
score between the lowest-rmsd docked complexes from
bound perturbation studies and the separate monomer
components for targets for which the binding affinities
are known.” ® Filled and open symbols represent
targets for which binding funnels were and were not
observed, respectively.

predicted within 5 A with at least one of the top ten
models, and 28 can be predicted within 10 A.

Results for enzyme—inhibitor pairs are particu-
larly successful: of the 22 enzyme—inhibitor pairs,
14 structures can be predicted in global unbound
searches with at least 50% of native residue-
residue contacts, and 17 can be predicted with at
least 25% native contacts; this is all but one of the
structures for which binding funnels are present
in the unbound perturbation studies.

Results for antibody—antigen pairs are encourag-
ing. Of the 16 targets, ten can be docked from
bound backbones, and nine can be docked from
unbound backbones in the perturbation studies. In
global searches, eight of the 16 targets can be pre-
dicted successfully at 25% native residue—-residue
contacts or more, with models of rank 10 or less.
Two of the five unbound —unbound targets exhibit
a funnel, and three can be found in a global search
to 25% native residue—residue contacts in ten
models.

The targets in the “other” category are challeng-
ing, particularly on the global search. Although
five of the ten targets exhibit funnels in both the
bound and unbound cases, only three targets can
be predicted successfully in a global search. The
“difficult” targets are so designated because they
exhibit a significant backbone conformational
change upon docking. As might be expected when
not modeling any backbone movement, the pro-
gram is unable to re-dock any of these five targets
in the unbound perturbation studies, even though
all exhibit funnels in the bound backbone pertur-
bation studies.

Table 2 separates the unbound —unbound targets
(for which both docking partners have monomer
coordinates available) from the semibound targets
(for which one docking partner’s backbone was
taken from the co-crystal coordinates, designated

with an asterisk in the Figures and Tables). The
overall success rates do not differ by much: 14 of
29 global searches correctly predicted 25% of the
native residue-residue contacts in the unbound-
unbound cases, compared with 14 of 25 semibound
cases. In the various categories, the differences
were more marked. All of the four failures in the
enzyme-—inhibitor category were of the unbound -
unbound type. The antibody/antigen category
actually had a higher success fraction for the
unbound —unbound cases (three of five versus five
of 11), although the number of unbound-unbound
targets is small. None of the unbound-unbound
targets was predicted correctly in the difficult or
other category, reflecting the challenge created by
the larger backbone movement in these categories.

Figure 7 shows pictures of the best predictions
superimposed with the native structures for
selected targets in each category. The enzyme-—
inhibitor predictions are excellent: in 1AVZ, 1CGI,
and 2SIC, the native structure and the prediction
overlay almost perfectly. Although the 1BRS fit is
less exact, it matches 33% of the native residue—
residue contacts while the inhibitor is somewhat
twisted within the active site of the receptor. The
program has recognized the general shape and
chemical complementarity but has not fit the inter-
face exactly. Both unbound-unbound and semi-
bound antibody/antigen targets match closely, as
well as two semibound targets from the “other”
category. This Figure displays the encouraging per-
formance of the algorithm on a wide variety of
interface types.

Discussion

The algorithm here imitates the physical process
of protein docking. Camacho hypothesizes that
docking occurs in two stages.*® During a “recog-
nition” stage, the two proteins diffuse near each
other until the interface patches come sufficiently
close to begin the “binding” stage, when a high-
affinity interaction is formed by modification of
the side-chain and backbone conformations. The
low-resolution search stage simulates the recog-
nition process, capturing short individual encoun-
ters between the proteins diffusing in a solution
with a Monte Carlo search of translations and
rotations. The high-resolution refinement simulates
the binding stage, as side-chain conformations are
rearranged while the protein simultaneously can
adjust its rigid-body position. This framework for
modeling protein interactions should provide a
basis for incorporating further realistic motions of
the protein, such as local backbone flexibility and
even global rearrangement, if the computational
requirements can be made more tractable.

The key elements to the algorithm’s success are
rapid searching during the first search stage
enabled by low-resolution protein representations
and scoring functions, the simultaneous optimiz-
ation of side-chain configurations and rigid-body
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(i) IATN*

(i) 18PB*

Figure 7. Selected structures from global prediction runs. Red and blue indicate the experimental co-crystal. Yellow
and green indicate the best prediction of rank less than 10 (determined by global rmsd). (a)—(d) Enzyme-inhibitor
systems; (e)—(h) antibody—antigen systems; (i)—(j) other systems.

displacement in the refinement, the free energy
function, the large numbers of decoys generated,
and the decoy clustering. This approach differs
significantly from most other docking algorithms.

The existence of the funnels in the bound cases
and the correlation between experimental binding
affinities and simulation binding scores (Figure 6)
indicates that the scoring function is beginning to
approach a true free energy function. The score is
dominated by packing interactions, solvation,
rotamer probability, and hydrogen bonding, and
includes contributions from electrostatics (Table 4,
Materials and Methods). Each of these contri-
butions is important for effective discrimination of
good and poor decoys. However, the repulsive
van der Waals interactions are particularly import-
ant. The steep function employed here (Materials
and Methods) increases the decoy enrichment sig-
nificantly better than previously used modified
van der Waals potentials with low penalties for
overlap.*%

The search strategy and the scoring function are
intimately linked. With a strict van der Waals func-
tion, it is difficult to search conformation space due
to the large energetic barriers between many free
energy minima. The refinement algorithm resolves
the search problem and is tailored for the strict
repulsive van der Waals potential. First, by using
a large number of rotamers in the packing algor-
ithm, realistic side-chain conformations that avoid
steric clashes can be found for correct interface
positions, while incorrect structures are likely to

contain atomic overlaps as well as voids at the
interface. Second, the Monte Carlo minimization
cycles, with simultaneous optimization of the
side-chain conformations and the rigid-body dis-
placement, efficiently explore a local area of con-
formation space to find the lowest of the nearby
minima in a very noisy energy landscape.

The results presented here outline challenges for
future exploration. Success ratios near 50% while
considering up to ten models leave much uncer-
tainty for biologists or engineers interested in
using the predicted structures. Failures may occur
for a variety of reasons. The most likely reason is
familiar to all who model biomolecules: insuffi-
ciently accurate free energy functions. The score
function could yet be missing a contribution from
a physical component that is essential for a particu-
lar target. This might include explicit water
molecules that make specific hydrogen bonds not
described accurately by the continuum solvent
model, or interactions with ions or small ligands
such as phosphate or heme groups. Several of the
score function components have some redundancy
(such as solvation and electrostatics), and certainly
electrostatics is treated in a rudimentary fashion.
In addition, the scoring may not be tuned opti-
mally for targets with particular interface types.
Finally, Figure 6 shows that our algorithm fails
consistently for weak binding pairs. Any of the
previously mentioned issues would be exacerbated
in the case of a weak binding interaction, or it may
be that native-like configurations simply do not
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exhibit enough of a favorable score relative to the
noise in the current scoring function. In any case,
energy function issues can be best isolated by
examining the bound backbone perturbation
studies, where other uncertainties are controlled.
Further individual examination of targets that do
not exhibit funnels in the bound backbone studies
(2KAI, 1BVK, 1WE], etc.) may lead to the identifi-
cation of the most important shortcomings.

Similarly, the search algorithm may be respon-
sible for cases that fail. For some antibody targets
(the unbound 1WE] and 1DQ)J), the search is
clearly insufficient because the low-resolution
stage does not create many decoys close to the
native position, likely prohibiting the high-
resolution refinement from finding the binding
funnel. In some cases, the rotameric representation
may be insufficient; a finer representation may be
necessary to achieve correct packing. In particular,
atoms at the ends of long rigid side-chains such as
the aromatics move significantly when represented
by rotamers. These search problems complicate the
evaluation of a free energy function; if good
positions are not sampled, it is impossible to tune
a scoring function properly.

Other researchers have noted difficulty in pre-
dicting cases with significant backbone motion."”
While the algorithm is successful in predicting
many targets using the unbound backbones, it
includes no means to adjust the backbone confor-
mation. It is completely unable to predict the six
difficult targets and there were several others
(1ACB, 1BRC, 1CSE, etc.) that exhibited funnels
for the bound backbones but not for the unbound
backbones. These targets would make good cases
for further studies with a generalized algorithm
capable of relaxing the backbone coordinates.

The current protocol produces predictions con-
taining between 35% and 80% of native residue—
residue contacts. On one hand, it is encouraging
that the free energy function can discriminate such
positions from false—positive structures. The
model structures could represent pre-docked con-
formations before the full binding stage is com-
plete. Since our algorithm relies on clustering, it
could be detecting positions with high degeneracy
(large configurational entropy). The interfaces
could exhibit multiple conformations in vivo, and
the models represent some of the non-crystallo-
graphic conformations of the docking (or pre-
docking) interaction. On the other hand, it is likely
that better modeling of the binding phase (with a
more accurate all-atom potential function and a
deeper search strategy) will lead to higher-quality
predictions with more correct contacts.

Although it is hard to compare studies that use
different measures of the quality of docking
algorithms, our method’s success rate near 50%
for unbound-unbound and bound-unbound
targets (using the 25% or 50% native residue-—
residue contacts criterion) is similar to that found
in other leading studies. The method of Fernan-
dez-Recio et al. predicted correct solutions in the

top 20 models in 17 of 24 cases, and Palma et al.
found correct solutions of rank 20 or less in 14 of
25 cases. Our method finds 25 of 54 in the top 20
with 50% of contacts, and 31 of 54 with 25%
contacts.

Conclusion

We have created a new docking algorithm that
mimics the physical process of docking, in that it
contains a low-resolution recognition stage and a
high-resolution binding stage. The high-resolution
refinement simultaneously optimizes the rigid-
body displacement and the side-chain confor-
mations. To our knowledge, this study is the
largest scale benchmark test to date. Perturbation
studies reveal docking funnels in 42 of 54 cases
using bound backbones and 32 of 54 cases using
one or both unbound backbones. In global
searches, one of the top ten models predicts cor-
rectly more than 25% of the native residue—residue
contacts in 28 of 54 cases. Still, despite progress,
this work highlights the challenges associated
with modeling biomolecular systems. The search
space is large and highly corrugated, and the free
energy function used is becoming more accurate
but is still insufficient for some systems. Protein
docking continues to be a significant scientific chal-
lenge to structural biologists and the biomolecular
modeling community.

Materials and Methods

Benchmark set

Targets are selected from the benchmark set described
by Chen et al.i (and see Table 3).* This set includes
enzymes and inhibitors, antibodies and antigens, several
“difficult” cases which have significant backbone confor-
mational change in the binding interfaces, and some
others. Targets in the benchmark set were selected for
the availability of structures of both the bound complex
and the unbound components. Since the number of
such targets is small, the set is supplemented with struc-
tures for which one of the two partners has a known
unbound structure.

Low-resolution scoring functions

In the low-resolution representation, each residue is
represented by the four backbone atoms (N, C*, C and
O) and one pseudo-atom, the “centroid,” to represent
the side-chain. The location of the centroid, determined
using known structures from the PDB, is the average
location of the side-chain atoms in residues of the same
identity and with ¢ and s angles in the same 10° X 10°
bin.%

Here, we detail the development of a low-resolution
(residue scale) potential function. In searching for a cor-
rectly docked structure, one would like to maximize the
probability of the complex structure being correct given

thttp:/ /zlab.bu.edu/~rong/dock/benchmark.shtml
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Table 3. Targets in the benchmark set™

AG

Complex Receptor Ligand Description (kcal/mol) K, (1/M) Ref.
A. Enzyme/inhibitor complexes
1ACB(E:I) 5CHA(A) 1CSE(I) a-Chymotrypsin/Eglin C —13.0 50x10° 44
1AVW(A:B) 2PTN 1BA7(A) Trypsin/Soybean trypsin inhibitor —-12.3 1.1x10° 45
1BRC(E:I) 1BRA 1AAP(A)  Trypsin/APPI
1BRS(A:D) 1A2P(B) 1A19(A) Barnase/Barstar —-17.2 45x 10" 45
1CGI(E:D) 1CHG 1HPT a-Chymotrypsinogen/Human pancreatic

secretory trypsin inhibitor
1CHO(E:I) 5CHA(A) 20VO a-Chymotrypsin/Ovomucoid third domain
1CSE(E:I) 1SCD 1ACB(I) Subtilisin Carlsberg/Eglin C -13.1 6.6x10° 44
1DFJ(I:E) 2BNH 7RSA Ribonuclease inhibitor/Ribonuclease A
1FSS(A:B) 2ACE(E) 1FSC Acetylcholinesterase /Fasciculin II —14.9 9.1x10" 46
1IMAH(A:F) 1IMAA(B) 1FSC Mouse acetylcholinesterase /inhibitor
1TGS(Z:1) 2PTN 1HPT Trypsinogen/Pancreatic secretory trypsin inhibitor
1TUGH(E:I) 1AKZ 1UGI(A) Human uracil-DNA glycosylase/inhibitor
2KAI(AB:I) 2PKA(XY) 6PTI Kallikrein A /Trypsin inhibitor
2PTC(E:I) 2PTN 6PTI B-Trypsin/Pancreatic trypsin inhibitor —14.2 40x10"° 47
2SIC(E:I) 1SUP 35SI Subtilisin BPN /Subtilisin inhibitor
2SNI(E:I) 1supP 2CI2(T) Subtilisin Novo/Chymotrypsin inhibitor 2
1PPE*(E:I) 2PTN 1PPE(I) Trypsin/CMT-1
1STF*(E:I) 1PPN 1STF(I) Papain/Stefin B —13.5 83x10° 48
1TAB*(E:I) 2PTN 1TAB(I) Trypsin/BBI
1UDI*(E:I) 1UDH 1UDI(I) Virus uracil-DNA glycosylase/inhibitor
2TEC*(E:I) 1THM 2TEC(I) Thermitase/Eglin C
4HTC*(LH:I) 2HNT(LCEF) 4HTC(I) a-Thrombin/Hirudin —154 2.0x 10" 49
B. Antibody/antigen complexes
1AHW(DE:F) 1FGN(LH) 1BOY Antibody Fab 5G9/Tissue factor —11.5 2.9 x 108 50
1BVK(DE:F) 1BVL(LH) 3LZT Antibody Hulys11 Fv/Lysozyme
1DQJ(AB:C) 1DQQ(LH) 3LZT Hyhel-63 Fab/Lysozyme
1IMLC(AB:E) 1MLB(AB) 1LZA IgG1 D44.1 Fab fragment/Lysozyme -9.7 14x107 45
1WEJ(LH:F) 1QBL(LH) 1HRC IgG1 E8 Fab fragment/Cytochrome ¢ -95 9.7x10° 45
1BQL*(LH:Y) 1BQL(LH) 1DK]J Hyhel-5 Fab/Lysozyme —145 4.6 x 10" 45
1EO8*(LH:A) 1EO8(LH) 2VIU(A)  Bhi151 Fab/Hemagglutinin
1FBI*(LH:X) 1FBI(LH) 1HHL IgG1 Fab fragment/Lysozyme
1TAT*(MLLH) 1AIF(LH) 1JAI(LH)  IgGl Idiotypic Fab/Igg2A anti-idiotypic Fab
1JHL*(LH:A) 1JHL(LH) 1GHL(A)  IgGl Fv Fragment/Lysozyme
1IMEL*(B:M) 1MEL(B) 1LZA Vh single-domain antibody/Lysozyme —10.5 50x10” 51
INCA*(LH:N) INCA(LH) 7NN9 Fab NC41/Neuraminidase
INMB*(LH:N) 1INMB(LH) 7NN9 Fab NC10/Neuraminidase
1QFU*(LH:A) 1QFU(LH) 2VIU(A) Iggl-k Fab/Hemagglutinin
2JEL*(LH:P) 2JEL(LH) 1POH Jel42 Fab fragment/A06 Phosphotransferase
2VIR*(AB:C) 2VIR(AB) 2VIU(A)  Iggl-\ Fab/Hemagglutinin
C. Other complexes
1AVZ(B:C) 1AVV 1SHF(A)  HIV-1 NEF/FYN tyrosin kinase SH3 domain —64 <5x10* 52
1IMDA(LH:A) 2BBK(LH) 1AAN Methylamine dehydrogenase/Amicyanin =73 22x10° 53
1WQ1(G:R) 1WER 5P21 RAS activating domain/RAS
2PCC(A:B) 1CCA 1YCC Cytochrome ¢ peroxidase/Iso-1-cytochrome c =70 14x0° 45
1A00*(A:B) 1CHN 1A00(B) Che Y/Che A -81 9.1x10° 45
1ATN*(A:D) 1ATN(A) 3DNI Actin/Deoxyribonuclease I —11.8 50x10* 54
1GLA*(G:F) 1GLA(G) 1F3G Glycerol kinase /GSF III —-6.7 9.1 x10* 55
1IGC*(LH:A) 1IGC(LH) 1IGD IgG1 Fab fragment/Protein G —12.6 20x10° 56
1SPB*(S:P) 1SUP 1SPB(P) Subtilisin/Subtilisin prosegment
2BTF*(A:P) 2BTF(A) 1PNE B-Actin/Profilin
D. Difficult test cases
1BTH(LH:P) 2HNT(LCEF) 6PTI Thrombin mutant/Pancreatic trypsin inhibitor
1FIN(A:B) 1HCL 1VIN CDK?2 cyclin-dependant kinase 2/Cyclin -9.9 21x107 57
1FQ1(B:A) 1B39(A) 1FPZ(F) CDK2/KAP
1GOT(A:BG) 1TAG 1TBG(AE) Transducin Gt-o, Gi-a chimera/Gt-B-y
1EFU*(A:B) 1D8T(A) 1EFU(B) E. coli EFtu/Efts -10.7 70%x10” 58
3HHR*(B:A) 3HHR(B) 1HGU Human growth hormone/Receptor —-11.7 6.3x107 59

The Table shows targets in the benchmark set (http://zlab.bu.edu/~rong/dock/benchmark.shtml), as well as experimentally
measured binding free energies and equilibrium constants. AG and K, values in standard type are those obtained from the
literature; values in italics are calculated assuming T = 298.15 K.
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the sequences and structures of the monomers,
P(Cstrlseq,Mstr). We follow the Bayesian decomposition:

P(seqlCstr, Mstr)P(Cstr|Mstr)
P(seq|Mstr)

P(Cstrlseq, Mstr) = (€Y

P(seqlCstr,Mstr) is the probability of a given complex
structure having a particular amino acid sequence; this
term isolates the chemical component of the score and
can be expanded further. P(CstrlMstr) is the probability
of the complex structure given the monomer structures,
and it contains the characteristics of well-docked com-
plexes, e.g. shape complementarity. P(seq/Mstr), the
probability of the sequences given the structures of the
monomers, is constant and can be neglected in the
analysis. In practice, the negative natural logarithm of
the probability is used as a score for the Monte Carlo
search. The score is decomposed into residue environ-
ment and pair terms (Sen, Spair) Which arise from
P(seqlCstr,Mstr) and contact, bump, and alignment
terms (Scontacty Sbumps Satign) Which arise from P(CstrMstr):

—In P(Cstrlseq, Mstr) = S

= Senv + Spair + Sbump + 2Scontact + Salign 2)

Residue environment and residue pair potentials

The chemical or sequence-specific terms arise from a
series expansion of P(seq|Cstr,Mstr):?

P(seqlCstr, Mstr)

= H P(aailEi)

aa;Eseq ,seqx

P(aa;, anlint, E;, Ey)

X
P(aajlint, E]‘, Ek)P(aaklint, E/‘, Ey)

aa; E€seqy aarEseqa

3

The first product is a residue environment term, and the
second is a residue pair term. The environment term
comprises amino acid propensities that capture the
solvation effects that drive the burial of hydrophobic
residues. For docking, we defined four environments
using two criteria: a residue in a protein complex can be
either buried or exposed to solvent, and either at the
interface or not at the interface of the complex. A buried
residue has at least 16 neighbors (defined as the residues
with their centroid pseudo-atom within 10 A of the
centroid of the original residue). An interface residue is
defined as a residue whose centroid lies within 6 A of
any residue centroid of the other docking partner. The
cutoff of 6 A was chosen because it best matches an
atomic-resolution criterion of defining interface residue
pairs as those with at least one atom within 4 A of an
atom in the other docking partner. The advantage of the
centroid-based criterion is that it can be calculated using
the low-resolution protein representation (i.e. without
explicit positions of the side-chain atoms), thus allowing
for a fast first stage of the algorithm.

The second-order term in equation (3) captures the
specific chemical interactions between amino acid
groups across the interface. The numerator,
P(aa;,antlint, Ej, Ey), is the frequency of interactions
between residues of type j and k in a calibration set of
interfaces, and the denominator normalizes by the total
frequencies of residues of type j or k in the set of inter-
face residue pairs. Again, a residue is designated at the
interface if its centroid is within 6 A of any centroid in

the other protein partner. By defining potentials through
the environment/pair decomposition, the dominant
solvation contributions due to burial do not overwhelm
the more subtle, environment-dependent pair inter-
actions. (Other studies prepare pair potentials without
this decomposition.”)

Environment and pair probabilities were calculated on
a large, non-redundant set of interfaces described by
Glaser et al.* Since antibody—antigen interfaces have a
chemical composition different from other transient bio-
logical interfaces, environment statistics for this category
of interfaces were calculated on a separate subset of anti-
body-antigen interfaces only (see below).

Contact and bump scores

The structural part of a decoy’s probability can be
approximated by rewarding contacts at the interface
and penalizing overlaps. The contact and bump scores
roughly capture the attractive and repulsive part of the
van der Waals interactions between proteins. Since
attractions between proteins maximize the number of
residues at the interface, a contact score is calculated as:

12 if Nine =0
9.5 if Nipe =2
Scontact = . (4)
10 — 0.5Njnt if2 < Njnt < 20
—10 if Nint = 20

where N, is the number of residues at the interface,
defined by the 6 A centroid-centroid distance criterion.
The score is linear with interface residues except that
extra penalties discourage the complete separation of
the docking partners and interfaces larger than 20
residues are not favored additionally.

The bump score detects steric clashes between
residues. A minimal approach distance d,; for each type
of atom-atom pair (where the types of atom, o or (3,
include the four backbone atoms plus each of the 20
types of centroid pseudo-atom) is determined using
statistics from high-resolution crystal structures (1.6 A
or better) from the PDB (updated tables, unpublished).”
A penalty is imposed for each atom—atom distance less
than the minimal approach distance, so that:

Sbump = Z (diﬁ - ryzj)z/diﬁ ®
y

where the sum is only over residues i and j in different
docking partners for which r;; < dug.

Alignment scores and other constraints

Biological information may be used to assess the prob-
ability of a structure being correct. For example, an align-
ment and conservation analysis®**° might indicate that a
certain patch of residues is conserved and likely to be
involved in binding. For the current study, we used an
alignment only to guide the docking of antibody-
antigen pairs. Antibody complementarity-determining
regions (CDRs) are known to contain the residues that
typically bind to an antigen. We created an alignment
profile using a set of 55 antibody-antigen pairs and
identified interface residues using the 6 A centroid-
centroid distance criterion. The profile was simplified
into three categories: sites that never contacted the
antigen (False); sites that contacted an antigen in one or
two structures in the set (Neutral); and sites that
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contacted the antigen in three or more complexes (True).
The alignment score S, g, is:

Salign = Z 5§ntpi (6)

1

where the sum is over all residues i, 8%‘“ is 1 if residue i is
an interface residue using the 6 A centroid criterion and
0 otherwise, and p; is 1.5 for False residue sites, 0.5 for
Neutral sites, and 0 for True sites. The profile used in
this work has been reported.*

Similarly, constraint scores can incorporate other
biological information. For example, if a certain resi-
due is phosphorylated in the interaction, it can be
constrained to the interface using a function that,
beyond a minimum constraint distance, penalizes
according to the distance between that residue and
the other partner. Our algorithm used constraints
during the CAPRI challenge;*® however, no such con-
straint is used in the current study.

High-resolution scoring functions and
refinement details

In the high-resolution search, all heavy atoms and
polar hydrogen atoms are represented explicitly. A com-
plete all-atom scoring function should capture van der
Waals interactions, solvation, hydrogen bonding, and
electrostatics in addition to local internal energies such
as torsion angle strains. No perfect free energy model
exists, so we have attempted to assemble one containing
each of these contributions in a manner that can best dis-
criminate docking decoys in a short amount of compu-
tation time per structure. While our representation is far
from optimal (including some partial redundancy), it is
designed to capture the major interactions as tested by
the ability of the scoring function to discriminate
between good and poor decoys.

Weight fitting

To determine which scoring functions to include,
bound-backbone perturbation decoys were used to fit
scoring weights. Weights for the scoring function were
determined using the statistical calculation language
R* following a method modified from that used by Tsai
et al? Decoys created in small perturbation runs were
designated as “good” if they were in the top 5% by
rmsd and below the mean of the repulsive van der
Waals score. A logistic regression was used to determine
weights that could maximally separate the good decoys
from the others. The regression included data from 68
targets including 38 of the 54 targets in the benchmark
set (using a set of decoys distinct from that used in test-
ing the algorithm performance). A dramatic improve-
ment in the performance of the scoring functions
resulted from the use of the repulsive van der Waals
score to partition the good decoys for fitting.

The significance of each term in the scoring function is
attested by its weight as well as the z-value of the assign-
ment of the weight, which shows which terms aid in dis-
criminating. Indeed, repulsive van der Waals interactions
dominate the score (i.e. they can most easily be used to
eliminate poor models), followed by attractive van der
Waals, solvation, rotamer probability, and hydrogen
bonding.

The full-atom score is a linear combination of an
attractive van der Waals score (S..), a repulsive van der

Waals score (S..p), an implicit solvation score (S.), a

surface area-based solvation term (S...), a hydrogen
bonding score (Si,), a rotamer probability term (Sgus), @
residue—residue pair probability term (S,.;,), and simple
electrostatic terms divided into short-range and long-
range attractive and repulsive components

SITep  gsr-atr glITeP  clr-atry .
(Selec 7Selec 7Selec 7Selec )

S= watrsat'r + wrepsrep + wsolssol + wsasassasa + whbshb

X . Sr-rep qsr-rep sr-atr gsr-atr
+ WqunSdun + wpalrspalr + Welec Selec + Wejee Selec

+ wlr—rep Slr—rep + wlr—atr Slrfatr 7)

elec “elec elec “elec

Values of the weights (w) used during packing, minimiz-
ation, and discrimination stages of the algorithm are
noted in Table 4.

Finally, although many of the test targets were used
also for weight calibration, over-fitting errors are
unlikely, since a small number of parameters were fit
with a very large set of data. A tally of results from an
independent subset of 16 targets in Table 1 supports this
assertion: the success ratios are similar to those of the
benchmark set as a whole. An 81% success rate on
bound-perturbation studies in the independent set com-
pares with a rate of 78% in the full benchmark set and,
similarly in global searches, a 69% success rate on the
prediction of 25% or more of native residue-residue con-
tacts compares with a rate of 52% in the full benchmark
set.

van der Waals interactions

The van der Waals interactions are split into attractive
and repulsive components and represented with a
modified Lennard-Jones 6-12 potential. To avoid the
singularity as the atom—atom distance r;; — 0, the short-
range repulsive score is extrapolated linearly below r;; =
0.60;j, where o is the sum of the atomic radii of atoms i

Table 4. Weights used in high-resolution scoring

Weight Weight = Weight z-
Score (P) M) (D) Value
Repulsive van der Waals 0.80 0.338 0.08 73.0

Attractive van der Waals 0.80 0.338 0.338 45.0

Surface area solvation - - 0.344 28.5
Gaussian solvent- 0.80 0.279 0.279 27.2
exclusion
Rotamer probability 0.79 0.069 0.069 19.6
Hydrogen bonding 2.1 0.441 0.441
SC/SC + SC/BB 14.9
BB/BB 6.8
Residue pair probability 0.66 0.164 0.164 6.9
Simple electrostatics
Short-range repulsive - 0.025 0.025 3.2
Short-range attractive - 0.025 0.025 8.3
Long-range repulsive - 0.098 0.098 15.1
Long-range attractive - 0.0020  0.0020 0.4

(P) indicates weights used during side-chain packing, (M)
indicates weights used during rigid-body minimization, and
(D) indicates weights used for discrimination. The z-value indi-
cates the importance of each term in the selection of good
decoys in a calibration set. SC and BB indicate side-chain and
backbone, respectively.
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and j. Thus:

12 6
s = <r” —24 > for 0.890; < r;j <8 A,
ij ij

0.12 0.6
€ij 7’12 —-2— for 0,60‘1‘]‘ <r;< 0.890‘1‘/‘7

rep
Y ’]

)

Sij(A + (060‘,] - Vj]')B) for Tij < 0.60,‘]',
o2 o6
withA=—"L - -2 7T _
(0.60',]) (060’,])
12 o6
dB=-12—" 4127 8
an (0.60’1])13 (0.60'1‘]')7 ( )

The energy well depths &;; and the atomic radii sums o
are taken from the CHARMMI9 set.*’ The repulsive
potential rises more steeply than the linearizations used
in previous work;*? the stringency provides signifi-
cantly better decoy discrimination. The total scores S,
and S, (as well as the other pair-wise all-atom scores)
are sums over all atom—atom pairs ij, including inter-
molecular pairs as well as intra-molecular pairs whose
distances depend on more than one set of backbone ¢
and { angles. That is, atoms in adjacent residues are
excluded to avoid redundancy with the backbone-
dependent rotamer probability term, which certainly
comprises contributions from local steric interactions.

Solvation

Solvation is scored using two different measures. First,
an implicit solvation score is computed according to the
pair-wise Gaussian solvent-exclusion model developed
by Lazaridis & Karplus.* Since the sequence identities
are constant, atom reference energies are omitted.

The second solvation score acts to minimize hydro-
phobic surface area. A surface area calculation to deter-
mine the solvent-accessible surface area is performed
rapidly with Boolean logic and look-up tables,** and the
surface is weighted by atomic solvation parameters.***
Due to the expense of the calculation, this score is used
only for the final decoy discrimination.

Orientation-dependent hydrogen bonding

The hydrogen bonding scores are represented with a
function derived from high-resolution protein structures
in the PDB and detailed by Kortemme & Baker (see the
Supplementary Material).** In this work, however,
hydrogen bonds are not weighted according to their
degree of burial.

Internal residue energies

The effects of local internal and packing stresses are
approximated by backbone-dependent rotamer prob-
abilities computed by Dunbrack & Cohen.” Probabilities
of non-canonical angles are calculated assuming a
Gaussian distribution about the means using the
tabulated variances.” The score is a sum of the negative
logarithms of the individual probabilities P; for each

residue I

Squn = Z

i

— log Pi(rotld;, 1) (€)]

While this score is responsible for the low ranking of
some native structures (1FIN, 1WQ1, etc.), it is essential
for the discrimination of decoys.

Residue pair potentials and simple electrostatics

Electrostatic preferences are modeled by both residue
pair potentials and a simple distance-dependent
dielectric model. Residue pair potentials are derived
from pair distribution functions with the residue-
residue distance measured between relevant “action
centers” of the side-chains. The formulation is given in
detail by Kuhlman & Baker (see the Supplementary
Material).”

Electrostatic contributions are added using a Coulomb
model:

elec = 3324, /7 = 332q:q;/7 / 10)

where 7 = min(rij,?;A) to avoid singularities as r; — 0,
and the dielectric is assumed to increase linearly with
distance (¢ ~ ?ij). Charges are modeled only on the most
polar side-chain atoms: a charge of —1/2 on each of the
3-oxygen atoms in Asp and the e-oxygen atoms in Glu,
a charge of +1/2 on the m-nitrogen atoms in Arg, and a
full positive charge on the {-nitrogen atom in Lys. Inter-
actions are separated into attractive and repulsive
categories as well as short-range (<5 A) and long-range
categories. In this way, the weight-fitting routine can
account for dielectric distance-dependence and discount
the attractive interactions that may be captured by the
hydrogen bonding function.

Side-chain packing

Side-chains are placed using a simulated annealing
algorithm that searches through backbone-dependent
rotamers, as described by Kuhlman & Baker” In
addition to the major x; angles used as described, angle
sets were expanded to include the major x; angles plus
and minus one standard deviation of those angles.” In
addition, major rotamer options for x; and x. angles
were included.

To save computation time, the side-chains of each pro-
tein monomer are added and optimized before docking
(“pre-packing”). Then, during the refinement stage of
the algorithm, only_residues with side-chain centroid
positions within 8 A of a side-chain centroid of the
other protein partner are included in the packing
routine. Disulfides must be treated with care in packing
algorithms. During the pre-packing of the monomer
components, disulfides are allowed to form, and extra
rotamer conformations are allowed for cysteine residues
(WR. Schief & D.B., unpublished results). During the
docking run, disulfide bonds are considered part of the
backbone and are frozen, while unpaired cysteine resi-
dues are not allowed to form disulfide bonds.

Assessment criteria

The root-mean-squared distance (rmsd) between two
structures is calculated over the C* atoms of the smaller
docking partner in the fixed coordinate frame of the
larger partner. In practice, the larger partner’s backbone
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position is fixed during the search routine, so that the
calculation becomes:

e =[5 s =l

where x; and y; are the positions of the two structures” C*
atoms in each residue i, and the sum is over the residues
in the smaller binding partner.

The contact fraction is determined by first identifying
all residue-residue contacts, defined as those pairs for
which at least one inter-residue heavy atom-heavy
atom distance is less than 4 A. The native residue-resi-
due contact fraction is then calculated as the fraction of
the contacts identified in the native structure that are
present also in the predicted structure. The complemen-
tary criterion, the fraction of predicted structure contacts
that are present in the native structure, produces values
in the vicinity of the reported native contact fractions
(data not shown).
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Note added in proof:
The complete protocol, as described in this paper, was used on target 8 in the third round of CAPRI (Janu-
ary 2003). With some human intervention to prepare the monomers and select models, the program cor-
rectly predicted 53% of the native residue-residue contacts in a model with 4.6 rmsd to the native
structure. This model was one of the two best predictions for this target in the challenge.



	Protein-Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations
	Introduction
	Results
	Docking algorithm
	Perturbation studies
	Global searches using unbound components

	Discussion
	Conclusion
	Materials and Methods
	Benchmark set
	Low-resolution scoring functions
	Residue environment and residue pair potentials
	High-resolution scoring functions and refinement details

	Acknowledgements
	References


