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Abstract

In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two
fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio
structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance
constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and
fail to converge. We present an algorithm developed originally for inverse kinematics applications in
robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering
adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the
C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The
algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time
to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal
anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable
for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable
dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of
loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large
test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast,
closing loops of length 8 in 0.037 sec on average.

Keywords: Homology modeling; loop modeling; protein structure prediction; inverse kinematics; robotics;
cyclic coordinate descent; loop closure

To characterize biological processes both in physiological
and pathological conditions, knowledge of the three-dimen-
sional structures of the proteins involved is of great impor-
tance. The number of unique sequences in the Protein Data
Bank (PDB; Berman et al. 2000) of experimentally deter-
mined structures is now >12,000, and the number of se-
quences in the nonredundant protein sequence database is
>1.2 million (Wheeler et al. 2002). Homology modeling
remains the most accurate structure prediction method for
bridging the gap between the number of sequences and
available structures. At least one-third of protein sequences

in most genomes are homologous at least in part to proteins
in the PDB (Sauder and Dunbrack Jr. 2000), and are there-
fore candidates for homology modeling. Ab initio folding
simulations have also made gains in recent years as the
necessary computational resources have become cheaper
and more plentiful (Simons et al. 1999). For domains with-
out representatives in the PDB, these methods may provide
at least a preliminary model that can be tested experimen-
tally.

Homology modeling usually proceeds via a number of
steps: (1) identification of a homolog of known structure
(the “parent”) for the sequence of interest (the “target”); (2)
refinement of the target–parent sequence alignment through
application of varied alignment methods or manual adjust-
ment in light of the known structure; (3) backbone modeling
by borrowing of core secondary structures and loops of
conserved length from the parent structure, and loop mod-
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eling in regions of the alignment that contain insertions and
deletions, or in which the sequence has diverged substan-
tially; (4) side-chain modeling onto the backbone given the
target sequence; (5) refinement and validation of the model.
In practice, backbone modeling and side-chain modeling are
interdependent. Some methods proceed by defining con-
straints from the known structure and the target–parent se-
quence alignment, rather than borrowing Cartesian coordi-
nates directly (Sali and Blundell 1993).

Although improvements in identification (Karplus et al.
1998; Jones et al. 1999), alignment quality (Sauder et al.
2000) and side-chain prediction methods (Bower et al.
1997; Dunbrack Jr. 1999; Mendes et al. 2001; Xiang and
Honig 2001; Liang and Grishin 2002) have been significant
in recent years, loop modeling remains a difficult task for
several reasons. For long loops, the number of available
conformations is enormous, and rapid and thorough sam-
pling is a challenge. Defining an energy function that can
select the right loop structure in an environment that is only
approximately correct for the target sequence is also quite
difficult. Most loop methods have not been tested in true
homology modeling situations, but rather in the more arti-
ficial situation of replacing a loop back into its own native
structure.

Modeling a loop requires satisfying the constraint of con-
necting the two protein segments on either end of the loop
with a physically reasonable peptide conformation. The
fixed residues on either side of the loop to be modeled are
termed the N- and C-terminal anchor residues. The anchors
place a constraint on the available conformations, thus re-
ducing the size of the conformational space, but satisfying
the constraint presents an algorithmic challenge. The “loop
closure” problem arises in nearly all loop-modeling meth-
ods, regardless of their nature. This is the case whether loop
closure takes place in the context of homology modeling or
in ab initio protein structure prediction, in which, for in-
stance, secondary structures may be moved as a whole and
new loops constructed to connect them. Database methods
(van Vlijmen and Karplus 1997) that borrow loops from
unrelated structures that approximately fit the anchors must
refine the loop structure to fit the actual anchors of the target
model. Ab initio loop-modeling methods (Bruccoleri and
Karplus 1987) may generate large numbers of random con-
formations. If these are built starting from the N-terminal
anchor in the model, then the loop must be adjusted to
connect the C-terminal residue of the loop to the C-terminal
anchor of the model. Some methods build randomly from
both the N- and C-terminal anchors, and the resulting seg-
ments must be connected in the middle (Moult and James
1986).

Several solutions have been presented to solve the “loop
closure” problem. Wedemeyer and Scheraga (1999) have
solved the problem analytically for tripeptides with 6 de-
grees of freedom. Shenkin et al. described an algorithm

based on the Jacobian matrix of first derivatives of distances
between atoms of the terminal residues of the loop with
respect to the dihedral degrees of freedom (Fine et al. 1986;
Shenkin et al. 1987). Their method, referred to as “random
tweak,” uses Lagrange multipliers to minimize changes in
the dihedral angles while satisfying the constraints on the
interatomic distances of the end residues. Starting from a
random conformation, all the dihedral angles are modified
at once in each step of the iteration until the distance con-
straints between the end residues are satisfied. Because of
the matrix inversion required, tweak is sometimes numeri-
cally unstable, if the matrix loses rank (i.e., has determinant
0 and is therefore uninvertible). Tweak requires that the
resulting loop be rotated into place, because the algorithm
attempts to satisfy distance constraints between the N- and
C-terminal anchor atoms, rather than between the last resi-
due of the moving loop and the fixed anchor. It also does not
allow imposing additional constraints on individual residues
because modifications to all dihedral angles are computed at
once, with strong dependence of each dihedral change on all
of the others. It has been used in a number of loop-modeling
programs, including Drawbridge (Ring et al. 1992), the Bio-
polymer program (Tripos, Inc.), and Loopy (Xiang et al.
2002).

Both Modeller (Fiser et al. 2000) and the “scaling relax-
ation” method of Zheng et al. (1992) build initial confor-
mations that connect the anchors by scaling the size of an
initial conformation to fit the anchors, and then gradually
returning the loop to normal size through an energy mini-
mization or molecular dynamics procedure. In Modeller, the
backbone atoms are built in a straight line from one anchor
to the other, whereas in the scaling relaxation method a
database loop is used.

Our implementation of the random tweak algorithm and
analysis of its limitations led us to examine a variety of
so-called inverse kinematics algorithms used in robotics and
computer-generated character animation. Forward kinemat-
ics methods calculate the positions of object components
based on internal and external degrees of freedom, whereas
inverse kinematics methods calculate the necessary changes
in internal and external degrees of freedom in order for an
object component to reach a desired position. Inverse kine-
matics algorithms are designed to move an “end effector”
(e.g., a robotic gripper) to reach for a specific location to
pick up an object by changing joint angles and modifying
segment lengths. As such, it is essentially the same problem
as loop closure in proteins or other molecules, as originally
pointed out by Manocha and Zhu (1994; Manocha et al.
1995). Many inverse kinematics algorithms are based on
computing the Jacobian and its inverse or pseudoinverse,
and hence like tweak are computationally expensive and
sometimes numerically unstable (Lander 1998). They rely
on changing all joint variables at the same time along a path
that will move the end effector toward the target object. In
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robotics, the problems of singularities in Jacobian-based
methods have been studied extensively (Maciejewski 1990;
Merlet 1992). Besides the computational difficulties, one
major drawback of Jacobian-based methods is that placing
constraints on some degrees of freedom may produce un-
predictable results. Capping or zeroing out certain elements
of the proposed vector of the changes in degrees of freedom
may result in motion of the end effector away from rather
than toward the target object.

One algorithm used in robotics that is flexible in allowing
constraints to be placed at each step, easy to program, con-
ceptually simple, and computationally fast is “cyclic coor-
dinate descent” (CCD). This algorithm was originally de-
veloped as an improved method for solving inverse kine-
matics problems in robotics (Wang and Chen 1991). CCD is
a member of a class of iterative relaxation algorithms
known as Jacobi or Gauss-Seidel methods (Briggs et al.
2000). It involves adjusting one degree of freedom at a time
to move the end effector toward the target object. This
results in one equation in one unknown for each degree of
freedom, and hence is analytically very simple and compu-
tationally fast. The method is free of singularities and it does
not include matrix inversion. It proceeds in iterative fashion
along a chain of degrees of freedom, modifying each joint
so that the end effector gets as close as possible to the
desired position. The equations are able to provide both an
optimum setting for the variable and the first and second
derivative of the change at the current position so that small
increments can be made in preference to large changes, if
desired. Given that the optimal change in a parameter in one
joint depends only on the current values of the other joint
parameters, one can place constraints on any degree of free-
dom, choosing to restrict their allowed values or place prob-
ability distributions on them.

In this paper, we describe the cyclic coordinate descent
algorithm, which we have modified for the problem of loop
closure in protein structure prediction. In robotics, the end
effector is usually a single point and the target position is a
single point. In protein modeling, the end effector may be
the three backbone atoms of the C-terminal residue of the
loop that must be superimposed onto the backbone atoms of
the fixed C-terminal anchor of the target model. Therefore,
we must also consider the orientation of the end effector as
well as its position. In the Materials and Methods section,
we describe the algorithm and derive the necessary equa-
tions for dihedral angle degrees of freedom and the orien-
tation constraint. There are several possibilities for choice of
end effector and target, and we describe one such possible
choice and its implementation. In the Results section, we
show that CCD can close loops from nearly any starting
configuration as long as the chain is long enough to reach
from the N-terminal anchor to the C-terminal anchor. We
have also explored the use of Ramachandran probability
maps as constraints in the CCD closure procedure. This is

accomplished by using CCD as a proposal step in a Monte
Carlo simulation. The CCD equations provide the move to
new values of the backbone dihedrals, and we use Rama-
chandran map probabilities to determine whether to accept
the move. We show that using the Ramachandran constraint
does not affect the success rate of loop closure by CCD.

Materials and methods

Our implementation of the CCD method for protein loop closure is
an iterative procedure that modifies sequentially each backbone
dihedral angle (� and �) in each residue that is part of the loop. We
define “N-anchor” and “C-anchor” to be the N- and C-terminal
anchor residues, respectively, that bracket the loop and remain
fixed throughout the calculation. These are illustrated in Figure
1A. The residues are numbered from 0 to n, where the 0-th residue
is the N-anchor and the n-th residue is the C-anchor. The calcu-
lation begins with some initial configuration of the loop consisting
of residues 0 through n. Residue 0 of the loop coincides exactly
with the N-anchor, whereas the position of residue n of the loop
will not coincide with the position of the fixed C-anchor. The goal
is to adjust the backbone dihedrals � and � of residues 1 to n so
that the backbone atoms N, C�, and C of the moving residue n are
superimposed on the corresponding backbone atoms of the fixed
residue n (i.e., the C-anchor).

The initial structure of the loop can be from any source. For
instance, it might be constructed from random values for the back-
bone dihedrals and standard bond lengths and bond angles, or it
might be obtained from a database search for loops that approxi-
mate the anchors. In either case, we have initial values for all
dihedrals, bond lengths, and bond angles for residues 1 through n.
In our implementation, starting from residue 0, we build the N
atom of residue 1 from the known (or chosen) value of � of residue
0, and the C� atom from � of residue 1. These atoms remain fixed
through the rest of the calculation. The remaining atoms of the
loop, beginning with C of residue 1 through C of residue n are built
from values of the dihedral angles �,� and the initial bond lengths
and angles.

Once the initial loop is constructed, the procedure involves
changing the values of the backbone dihedrals � and � iteratively
until the backbone atoms of residue n are superimposed on the
fixed backbone atoms of the C-anchor residue. The progress of the
loop closing process is assessed by the distances between the back-
bone atoms of the moving C-terminal residue of the loop and their
desired positions in the C-anchor.

As shown in Figure 1B, F1, F2, and F3 are vectors that represent
the fixed target positions for the atoms of the C-terminal residue of
the loop. The positions of the moving C-terminal residue atoms are
represented by M01,M02,M03, and M1,M2,M3, before and after a
change, respectively, in a dihedral angle of any residue in the loop.
The rotation axis (containing O1, O2, O3) is given by the direction
of the bond corresponding to the dihedral angle that is modified
(N—C� for �, C�—C for �), where O1, O2, and O3 are the foot-
points of vectors from the rotation axis to the three atoms of the
moving C-terminal anchor.

To accomplish the overlap between the current and desired po-
sitions of the atoms, the sum of squared distances, S, should be
minimized:

S = F1M1

→
2 + F2M2

→
2 + F3M3

→
2 ( 1)

where

Robotics algorithm for protein loop closure

www.proteinscience.org 965



F1M1

→
= O1M1

→
− O1F1

→
( 2)

Notating
→
O1M01 �

→
r1 and

→
O1F1 �

→
f1 and defining a local

orthogonal system of coordinates r̂1, ŝ1, �̂, where r̂1 is the unit
vector of r�1 and �̂ is the unit vector along the rotation axis, we can
write:

O1M1

→
= r1 cos �r̂1 + r1 sin �ŝ1 ( 3)

From equations 2 and 3, it follows that

F1M1

→
= r1 cos �r̂1 + r1 sin �ŝ1 − f�1 ≡ d�1 ( 4)

with similar equations for the second and third atoms.
Calculating the squared distances between the moving atoms

and the fixed target atoms, we obtain:

d1

→
2 = r1

2 + f1
2 − 2r1 cos� � f�1 � r̂1� − 2r1 sin� � f�1 � ŝ1�

d2

→
2 = r2

2 + f2
2 − 2r2 cos� � f�2 � r̂2� − 2r2 sin� � f�2 � ŝ2�

d3

→
2 = r3

2 + f3
2 − 2r3 cos� � f�3 � r̂3� − 2r3 sin� � f�3 � ŝ3� ( 5)

The first-order derivative for S is

dS

d�
=

d� d1

→
2�

d�
+

d� d2

→
2�

d�
+

d� d3

→
2�

d�
( 6)

where for i � 1, 2, 3 we have

d� di

→
2�

d�
= 2ri sin� � f�i � r̂i� − 2ri cos� � f�i � ŝi� ( 7)

Setting dS/d� � 0, we obtain tan �, where � is the rotation
angle that will yield an extreme value for the sum of square dis-
tances described above.

tan � =
� f�1 � ŝ1�r1 + � f�2 � ŝ2�r2 + � f�3 � ŝ3�r3

� f�1 � r̂1�r1 + � f�2 � r̂2�r2 + � f�3 � r̂3�r3

( 8)

Inverting the tangent will produce two values for � that are �
radians apart. The correct one is that which produces a positive
value of the second derivative of S, which is easily derived from
equations 6 and 7.

In practice we obtain � in a different way. With S of the form

S = a − b cos� − c sin�, ( 9)

multiplying the last two terms by

�b2+ c2 � �b2 + c2,

and defining

cos� =
b

�b2 + c2,

sin� =
c

�b2 + c2
( 10)

S can be written as

Figure 1. (A) C� trace of a loop before (red) and after (green) closure with the flanking secondary structures (blue). The moving
C-terminal anchor and the fixed C-terminal anchor are indicated. The loop closure problem is to adjust the dihedral angle degrees of
freedom of the loop so that the moving C-terminal anchor is superimposed on the fixed C-terminal anchor. (B) Schematic of the CCD
algorithm. Variables are defined in the text.
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S = a − �b2 + c2 cos�� − �� ( 11 )

When � � �, S is a minimum. This is the same solution as
equation 8, except that we now have sine and cosine explicitly
defined. We use the atan2(y, x) function of the C programming
language to return � in the correct quadrant, rather than making use
of the second-order derivative test.

Test set

To test our algorithm, we selected a set of 2752 loops from 366
X-ray crystallographic structures in the PDB. The selected loops
belong to structures that have been solved to a resolution better
than 1.6 Å and have mutual sequence identity <20%. The list of
structures was obtained from the PISCES server (formerly the
CulledPDB server, now available at http://www.fccc.edu/research/
labs/dunbrack/pisces). The chosen loops were identified as having
coil structure by the Stride program (Frishman and Argos 1995).
None of the loops in the test set are adjacent to disordered residues
as determined by our validation program S2C (http://www.
fccc.edu/research/labs/dunbrack/s2c).

Ramachandran probability maps

We derived Ramachandran probabilities from data used to build
our backbone-dependent rotamer libraries (May 2002 release;
Dunbrack Jr. and Cohen 1997). Pairs of �,� dihedral angles were
weighted with a Gaussian function, and counts were produced in
10° bins in � and � over the entire Ramachandran map.

Implementation

We have implemented CCD in object-oriented C++ under RedHat
Linux 7.3. All calculations were performed on an AMD1800+ MP
processor.

Results

For each loop in our test set, we generated 100 random
loops by drawing values for the � and � dihedral angles
randomly from PDB structures used to build our backbone-
dependent rotamer library (Dunbrack Jr. and Cohen 1997).
We used random �,� from the PDB rather than random
values from the interval 0°–360° to produce more protein-
like starting conformations. Loops were built starting from
the N-anchor residue Cartesian coordinates from the struc-
ture as described in Materials and Methods. The last residue
of the random loop structure was built with the crystallo-
graphic bond lengths and bond angles, so that the RMS of
the superposition of the moving and fixed C-anchors would
not depend on differences in these parameters. We consider
the loop closed when the RMS of the N, C�, and C atoms of
the moving and fixed C-anchor residues is <0.08 Å. The
maximum number of CCD iterative cycles was limited to
5000.

The first implementation of CCD entailed using equation
10 to calculate the change in each dihedral along the chain
and accepting the proposed move with probability 1. This

algorithm is denoted “CCD No Constraint” in Table 1. Of
the 275,200 loops closed (100 random conformations of
each of 2752 loops in the test set), 99.79% of them closed
to within 0.08 Å RMS in fewer than 5000 steps, where each
step consists of a single cycle through all dihedral angles of
the loop. Most loops closed in fewer than 200 steps (see
below).

To examine the effect of adding a constraint to CCD, we
used Ramachandran probability maps to determine whether
moves proposed by equation 10 would be accepted in each
step. The algorithm proposed a change in � and, based on
the new �, proposed a new value for �. The new �,�
position was accepted with probability 1.0 if the probability
of the new �,� was higher than the current value. It was
accepted with probability pnew/pold if the new probability
was lower than the current value. The results over the same
set of 275,200 random conformations are also shown in
Table 1 (labeled “CCD Ramachandran Map”), and demon-
strate that the Ramachandran constraint has essentially no
effect on the loop closure rate.

We investigated situations in which the generated loops
did not close within 5000 steps. For each unclosed loop, the
RMS of N, C�, and C atoms of the C-terminus residue in the
simulated loop and C-anchor was calculated. The distribu-
tions of the number of loops as a function of the RMS are
shown in Figure 2. The figure shows that the greatest ma-
jority of the loops that were not able to close within the
imposed error margin (0.08 Å) are within 0.1 Å RMS from
the target position, in both versions of the algorithm. There
is also no significant difference between the Ramachandran
probability version of the algorithm and the unconstrained
one, with respect to the RMS distributions.

The lowest closure rates were for very short loops of 4 or
5 amino acids. We examined loops that failed to close, and
in every case these were extended conformations. CCD con-

Table 1. Results of loop closure trials

Loop
length

CCD no constraint CCD Ramachandran map

No. of
loops

No. of
unclosed

loops

Percentage
of closed

loops
No. of
loops

No. of
unclosed

loops

Percentage
of closed

loops

4 58,500 886 98.49 58,500 848 98.55
5 54,400 208 99.62 54,400 213 99.61
6 37,400 80 99.79 37,400 90 99.76
7 29,800 18 99.94 29,800 15 99.95
8 24,500 13 99.95 24,500 16 99.93
9 21,000 4 99.98 21,000 2 99.99

10 14,400 3 99.98 14,400 2 99.99
11 11,900 6 99.95 11,900 2 99.98
12 9800 2 99.98 9800 0 100
13 7500 0 100 7500 0 100
14 6000 0 100 6000 0 100
Total 275,200 1220 99.79 275,200 1188 99.80
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verged in a local minimum for every dihedral of the loop. A
simple Monte Carlo step that proposes moves that increase
the RMS can be added in these situations to move the al-
gorithm out of the local minimum. It should also be noted
that for these extended loops, most trials actually closed,
and only a small number failed to converge. Histograms for
the number of steps required to close the loops in the input
data set are shown in Figure 3. The large majority of trials
close within 100–500 steps. For all loop lengths, the number
of steps required with the Ramachandran map constraint is
higher than without the constraint, as expected.

CCD has been designed to be used with any loop predic-
tion algorithm that generates reasonable trial structures,
coupled with an energy function to identify the best loops.
As such, it is not a prediction method on its own, nor is it a
sampling algorithm per se but, rather, a component of one.
Nevertheless, we were interested to determine how many
random loop structures would need to be built and closed
with the generation procedure described in Materials and
Methods to obtain a reasonable RMS to the real structure.
For this purpose, we chose 10 loops at lengths 4, 8, and 12,
for a total of 30 loops. For each of the loops we generated

Figure 2. Histograms of RMS values for unclosed loops at loop lengths of 4, 8, and 12 for the CCD No Constraint and the CCD Ramachandran Map
algorithms. Note that all loops of length 12 closed for the CCD Ramachandran Map algorithm, so there is no plot.
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5000 random loops and closed them, using the CCD Ra-
machandran Map algorithm. In Table 2, we show the mini-
mum RMS achieved for these 30 loops. The average for
loops of 4, 8, and 12 amino acids is 0.56, 1.59, and 3.04 Å,
respectively. Examples of these minimum RMS conforma-
tions are shown in Figure 4. Although the RMS is low in
Figure 4C for the 12-amino-acid loop, other samples might
better reflect the positions of backbone carbonyls and NH
groups relative to the whole protein structure.

We investigated the CCD Ramachandran map constraint
method to determine whether loops closed from the same
starting conformation would converge to the same structure,

cluster into groups, or be distributed randomly. The se-
quence of random numbers used to determine whether
moves are accepted or not was seeded differently in each
run, resulting in different closed structures from the same
initial structure. We used a loop from PDB entry 1egu (Li et
al. 2000), residues 508–519 of length 12, closed it 500 times
from the same conformation, and calculated the RMS be-
tween each pair in this set. It is useful to compare the
distributions of RMS values among this set, with the RMS
values among a set of 500 closures of the same loop, but
starting from different initial conformations for each trial.
The comparison is shown in Figure 5. Loops starting

Figure 3. Histograms of the number of steps for loop closure at loop lengths 4, 8, and 12 for the CCD No Constraint and the CCD Ramachandran Map
algorithms.
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from the same conformation do cluster, as demonstrated
by the peak at RMS near 0 Å. Loops starting from differ-
ent conformations do not converge to the same structure.
The RMS values approximately follow a gamma distribu-
tion.

We compared CCD to the random tweak method (Shen-
kin et al. 1987) used in some loop prediction algorithms
(Xiang et al. 2002). In our version of random tweak, we set
constraints on the distances of 0 Å between the moving
C-terminal anchor N, C�, and C atoms and the correspond-
ing atoms of the fixed C-anchor. Note that this is differ-
ent from the original description, which fixes distances
between the N- and C-terminal C� atoms. We ran the
same test set shown in Table 2 for 8 residue loops, consist-
ing of 500 initial configurations of 10 loops, for a total
of 5000 trials for both tweak and CCD No Constraint. We
used the same final RMS criterion for a closed loop of 0.08
Å and 5000 rounds of each algorithm maximum. CCD was
able to close all 5000 of these loops in ∼7 min, whereas
random tweak closed 4841 loops in 40 min, failing on 159
loops.

Finally, we further investigated the computation time
needed by the CCD algorithm itself, without the time
needed to read the initial conformation and the full
Ramachandran probability maps for the 20 amino acids
from the disk for each closure. We used the same set of
10 loops of length 4, 8, and 12 listed in Table 2, but this
time generated 500 random conformations within the
program, thus reading in only a single initial conforma-
tion and reading in the probability map only once. We
generated 500 random conformations in this manner and
closed them, with two different RMS cutoffs. With an er-
ror margin of 0.08 Å, the average computing time was
0.031, 0.037, and 0.023 sec per loop for loops of lengths 4,
8, and 12, respectively. With a looser cutoff of 0.16 Å, the
times would be significantly lower. For instance, for 8
amino acid loops, the average computing time was 0.026
sec per loop. It is interesting to note that CCD takes less
time for longer loops, because these loops have more de-
grees of freedom and more solutions to the loop closure
problem.

Figure 4. C� renderings of the lowest RMS loop generated from 5000
trials of the CCD Ramachandran Map method for loops of 4, 8, and 12
amino acids, compared with the X-ray structures (dark figures). (A) Loop
1ej0A_74–77, (B) loop 1ctqA_144–151, (C) loop 1eguA_508–519.

Table 2. Minimum RMS from X-ray structure in 5000 trials per loop of CCD
Ramachandran map algorithm

Length 4 Length 8 Length 12

Loop Min RMS Loop Min RMS Loop Min RMS

1dvjA_20-23 0.606 1cruA_85-92 1.753 1cruA_358-369 2.538
1dysA_47-50 0.676 1ctqA_144-151 1.344 1ctqA_26-37 2.487
1eguA_404-407 0.675 1d8wA_334-341 1.506 1d4oA_88-99 2.328
1ej0A_74-77 0.337 1ds1A_20-27 1.581 1d8wA_46-57 4.827
1i0hA_123-126 0.616 1gk8A_122-129 1.684 1ds1A_282-293 3.042
1id0A_405-408 0.671 1i0hA_145-152 1.351 1dysA_291-302 2.478
1qnrA_195-198 0.491 1ixh_106-113 1.605 1eguA_508-519 2.137
1qopA_44-47 0.627 1lam_420-427 1.604 1f74A_11-22 2.715
1tca_95-98 0.393 1qopB_14-21 1.849 1q1wA_31-42 3.378
1thfD_121-124 0.495 3chbD_51-58 1.659 1qopA_178-189 4.568
Avg. min RMS 0.559 Avg. min RMS 1.594 Avg. min RMS 3.050
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Discussion

Loop closure is a component of a number of protein struc-
ture prediction problems, including various approaches to
homology modeling as well as Monte Carlo simulations of
protein folding. Because most structure prediction methods
proceed by producing large numbers of trial configurations,
a fast loop closure method is of significant importance.
Although several algorithms have been presented previ-
ously, each suffers from a number of drawbacks. These
include lack of convergence, numerical instability, and
cumbersome implementations. We have described a very
simple method for loop closure borrowed from robotics that
is easy to understand and implement.

As mentioned in the Results section, CCD is not meant to
be a sampling strategy on its own but, rather, is to be used
with any method that generates unclosed trial conforma-
tions. In this paper, we have generated trial conformations
by drawing random values for �,� from X-ray data from the
PDB. These data were taken from loop residues and were
specific for each amino acid type. The procedure as de-
scribed here does not have any steric bump checks or in-
ternal energy evaluations of any kind, other than the Ra-
machandran probabilities. Nevertheless, this procedure was
able to generate loops on average minimum RMS values of
0.56, 1.59, and 3.04 Å from the native structure for loops of
4, 8, and 12 residues. This compares favorably with some
other sampling strategies, such as that of Tosatto et al.
(2002), who used a divide-and-conquer method to generate
average minimum RMS values of 1.0, 2.22, and 3.5 Å for
loops of lengths 4, 8, and 12. Sudarsanam et al. (1995) used
a database of �i,�i + 1 pairs to model loops and achieved
lowest RMSD values of 1.2–1.3 Å in 10,000 simulations for
an 8-amino-acid loop. However, these loops were not

closed. By including a CHARMM-based energy function
during loop construction and simulation, Fiser et al. (2000)
were able to achieve lowest RMSDs (regardless of energy)
of 0.70, 0.93, and 1.93 for three 8-amino-acid loops. It
remains to be seen whether in designing a loop prediction
strategy incorporating CCD it is better to include energy
evaluations during the CCD closure procedure, or to build
large numbers of samples and evaluate their energy in the
context of the protein afterward. CCD can be easily modi-
fied to include other constraints such as avoidance of col-
lisions. Techniques from robot motion planning would
probably be most suitable for this purpose (Singh et al.
1999).

CCD’s advantages compared with Jacobian-based meth-
ods are its simplicity, ease of implementation, speed, and
lack of singularities (Welman 1993). One disadvantage in
our present implementation is that the algorithm favors
large changes in the first residues of the loop. If the loop can
be nearly closed with manipulations of the first few resi-
dues, then the other residues will barely move at all. This
probably occurs fairly rarely. In any case, to preserve simi-
larity to the initial configuration and to even out the changes
in the dihedrals across the whole loop, one can impose
limits on the change in dihedral angles at each step. Because
we have an expression for the distance (and its derivative)
of the moving C-anchor to the fixed C-anchor, we can
choose to make small moves toward an RMS of 0, rather
than propose the full CCD step to the minimum value of S
in equation 11. Another disadvantage is that CCD may oc-
casionally get stuck in a local minimum, when solving equa-
tion 11 for each dihedral results in no change in configura-
tion. The method can be modified to check for this and to
add a step that will move the moving C-anchor residue away
from the target.

Figure 5. Comparison of distribution of RMS among conformations generated from the same initial structure (light bars) and different
initial structures (dark bars). PDB entry 1egu, residues 508–519, was used as the test case.
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CCD is a good example of crossover of algorithms from
one field to another that is a hallmark of bioinformatics and
computational biology. The inverse kinematics problem is a
staple of robotics, and the cyclic coordinate descent algo-
rithm described here is one of several methods that are
likely to be borrowed from this field in structural biology.
Other recent examples include the use of robot motion plan-
ning and probabilistic roadmaps in protein folding (Singh et
al. 1999; Apaydin et al. 2002; Brutlag et al. 2002), analyti-
cal inverse kinematics approaches applied to protein loop
closures of six dihedral degrees of freedom or fewer (Mano-
cha and Zhu 1994; Manocha et al. 1995), and a randomized
kinematics search for loop closure in the drug design prob-
lem (Lavalle et al. 2000). It is likely that there will be more
interactions between these disciplines in the future.

Acknowledgments

We gratefully acknowledge support from NIH Grants R01-
HG2302 to R.L.D. and CA06972 to Fox Chase Cancer Center.
A.A.C. is an NIH Postdoctoral Trainee.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

References

Apaydin, M.S., Guestrin, C.E., Varma, C., Brutlag, D.L., and Latombe, J.C.
2002. Stochastic roadmap simulation for the study of ligand–protein inter-
actions. Bioinformatics 18 Suppl.: S18–S26.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic
Acids Res. 28: 235–242.

Bower, M.J., Cohen, F.E., and Dunbrack Jr., R.L. 1997. Prediction of protein
side-chain rotamers from a backbone-dependent rotamer library: A new
homology modeling tool. J. Mol. Biol. 267: 1268–1282.

Briggs, W.L., Henson, V.E., and McCormick, S.F. 2000. A multigrid tutorial.
SIAM, Philadelphia.

Bruccoleri, R.E. and Karplus, M. 1987. Prediction of the folding of short poly-
peptide segments by uniform conformational sampling. Biopolymers 26:
137–168.

Brutlag, D., Apaydin, S., Guestrin, C., Hsu, D., Varma, C., Singh, A., and
Latombe, J.C. 2002. Using robotics to fold proteins and dock ligands. Bio-
informatics 18 Suppl.: S74.

Dunbrack Jr., R.L. 1999. Comparative modeling of CASP3 targets using PSI-
BLAST and SCWRL. Proteins Suppl. 3: 81–87.

Dunbrack Jr., R.L. and Cohen, F.E. 1997. Bayesian statistical analysis of protein
side-chain rotamer preferences. Protein Sci. 6: 1661–1681.

Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L., and Levinthal, C. 1986.
Predicting antibody hypervariable loop conformations. II: Minimization and
molecular dynamics studies of MCPC603 from many randomly generated
loop conformations. Proteins 1: 342–362.

Fiser, A., Do, R.K., and Sali, A. 2000. Modeling of loops in protein structures.
Protein Sci. 9: 1753–1773.

Frishman, D. and Argos, P. 1995. Knowledge-based protein secondary structure
assignment. Proteins 23: 566–579.

Jones, D.T., Tress, M., Bryson, K., and Hadley, C. 1999. Successful recognition
of protein folds using threading methods biased by sequence similarity and
predicted secondary structure. Proteins Suppl3: 104–111.

Karplus, K., Barrett, C., and Hughey, R. 1998. Hidden Markov models for
detecting remote protein homologies. Bioinformatics 14: 846–856.

Lander, J. 1998. Making kine more flexible. Game Developer 1 (Nov.): 15–22.
Lavalle, S.M., Finn, P.W., Kavraki, L.E., and Latombe, J.-C. 2000. A random-

ized kinematics-based approach to pharmacophore-constrained conforma-
tional search and database screening. J. Comp. Chem. 21: 731–747.

Li, S., Kelly, S.J., Lamani, E., Ferraroni, M., and Jedrzejas, M.J. 2000. Struc-
tural basis of hyaluronan degradation by Streptococcus pneumoniae hyal-
uronate lyase. EMBO J. 19: 1228–1240.

Liang, S. and Grishin, N.V. 2002. Side-chain modeling with an optimized
scoring function. Protein Sci. 11: 322–331.

Maciejewski, A.A. 1990. Dealing with ill-conditioned equations of motion for
articulated figures. IEEE Comp. Graph. App. 10: 233–242.

Manocha, D. and Zhu, Y. 1994. Kinematic manipulation of molecular chains
subject to rigid constraints. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2: 285–
293.

Manocha, D., Zhu, Y., and Wright, W. 1995. Conformational analysis of mo-
lecular chains using nano-kinematics. Comput. Appl. Biosci. 11: 71–86.

Mendes, J., Nagarajaram, H.A., Soares, C.M., Blundell, T.L., and Carrondo,
M.A. 2001. Incorporating knowledge-based biases into an energy-based
side-chain modeling method: Application to comparative modeling of pro-
tein structure. Biopolymers 59: 72–86.

Merlet, J.-P. 1992. Geometry and kinematic singularities of closed-loop ma-
nipulators. J. Lab. Robotics Automation 4: 85–96.

Moult, J. and James, M.N.G. 1986. An algorithm for determining the confor-
mation of polypeptide segments in proteins by systematic search. Proteins
1: 146–163.

Ring, C.S., Kneller, D.G., Langridge, R., and Cohen, F.E. 1992. Taxonomy and
conformational analysis of loops in proteins. J. Mol. Biol. 224: 685–699;
Erratum 227: 977.

Sali, A. and Blundell, T.L. 1993. Comparative protein modelling by satisfaction
of spatial restraints. J. Mol. Biol. 234: 779–815.

Sauder, J.M. and Dunbrack Jr., R.L. 2000. Beyond genomic fold assignment:
Rational modeling of proteins of biological interest. Proc. Int. Conf. Intell.
Syst. Mol. Biol. 8: 296–306.

Sauder, J.M., Arthur, J.W., and Dunbrack Jr., R.L. 2000. Large-scale compari-
son of protein sequence alignment algorithms with structure alignments.
Proteins 40: 6–22.

Shenkin, P.S., Yarmush, D.L., Fine, R.M., Wang, H.J., and Levinthal, C. 1987.
Predicting antibody hypervariable loop conformation. I. Ensembles of ran-
dom conformations for ringlike structures. Biopolymers 26: 2053–2085.

Simons, K.T., Bonneau, R., Ruczinski, I., and Baker, D. 1999. Ab initio protein
structure prediction of CASP III targets using ROSETTA. Proteins 37:
171–176.

Singh, A.P., Latombe, J.C., and Brutlag, D.L. 1999. A motion planning ap-
proach to flexible ligand binding. Proc. Int. Conf. Intell. Syst. Mol. Biol. 7:
252–261.

Sudarsanam, S., DuBose, R.F., March, C.J., and Srinivasan, S. 1995. Modeling
protein loops using a �i + 1,�i dimer database. Protein Sci. 4: 1412–1420.

Tosatto, S.C., Bindewald, E., Hesser, J., and Manner, R. 2002. A divide and
conquer approach to fast loop modeling. Protein Eng. 15: 279–286.

van Vlijmen, H.W.T. and Karplus, M. 1997. PDB-based protein loop prediction:
Parameters for selection and methods for optimization. J. Mol. Biol. 267:
975–1001.

Wang, L.T. and Chen, C.C. 1991. A combined optimization method for solving
the inverse kinematics problem of mechanical manipulators. IEEE Trans.
Robotics Automation 7: 489–499.

Wedemeyer, W.J. and Scheraga, H.A. 1999. Exact analytical loop closure in
proteins using polynomial equations. J. Comp. Chem. 20: 819–844.

Welman, C. 1993. Inverse kinematics and geometric constraints for articulated
figure manipulation. In School of computing science, pp. 77. Simon Fraser
University, Burnaby, BC, Canada.

Wheeler, D.L., Church, D.M., Lash, A.E., Leipe, D.D., Madden, T.L., Pontius,
J.U., Schuler, G.D., Schriml, L.M., Tatusova, T.A., Wagner, L., et al. 2002.
Database resources of the National Center for Biotechnology Information:
2002 update. Nucleic Acids Res. 30: 13–16.

Xiang, Z. and Honig, B. 2001. Extending the accuracy limits of prediction for
side-chain conformations. J. Mol. Biol. 311: 421–430.

Xiang, Z., Soto, C.S., and Honig, B. 2002. Evaluating conformational free
energies: The colony energy and its application to the problem of protein
loop prediction. Proc. Natl. Acad. Sci. 99: 7432–7437.

Zheng, Q., Rosenfeld, R., Vajda, S., and DeLisi, C. 1992. Loop closure via bond
scaling and relaxation. J. Comp. Chem. 14: 556–565.

Canutescu and Dunbrack Jr.

972 Protein Science, vol. 12


