Rosetta tutorial MP_span_from_pdb

Nov 4, 2015
Author: Julia Koehler Leman (julia.koehler1982@gmail.com)
See also: Rosetta/demos/protocol_capture/mp_span_from_pdb/

Publication describing the method and RosettaMP:
Alford, R. F. et al. An Integrated Framework Advancing Membrane Protein Modeling and Design. PLoS Comput. Biol. 11, e1004398 (2015).

Introduction

The objective of this tutorial is to create a Rosetta transmembrane span topology file from a structure. Almost all membrane protein modeling applications in Rosetta require a transmembrane span topology file (aka spanfile) as input. A spanfile is used to define the initial position of the protein in the membrane, which may later be optimized, depending on the application used. To create a spanfile from a structure, the input structure must be transformed into membrane coordinates and cleaned/renumbered. Improper setup of the PDB file will lead to erroneous results. The mp_span_from_pdb application reads and creates a spanfile for each protein chain separately, in addition to providing a spanfile for the entire structure. Available options are

executable
Rosetta/main/source/bin/mp_span_from_pdb.linuxgccrelease \

Rosetta database
-database Rosetta/main/database \

input PDB file
-in:file:s 1afo_tr_AB.pdb \

ignore unrecognized residues, for instance non-canonical amino acids
optional but advisable
-ignore_unrecognized_res 1 \

optional: provide half of the membrane thickness
the default value is 15.0 if this option is not provided
-mp:thickness 12.5 \

For the sake of this tutorial, we will call the application as

Rosetta/main/source/bin/mp_span_from_pdb.linuxgccrelease -database Rosetta/main/database -in:file:s 1afo_tr_AB.pdb

The mp_span_from_pdb application detects transmembrane spans on a per-residue basis with the following considerations: (1) spans are defined if the residues are positioned in the membrane, i.e. between the negative and positive (half-)membrane thickness and if the residues are in a helix or strand secondary structure. Additionally, (2) a span is only considered as such if it is longer than 3 residues in length and is not amphipathic, as judged from the the difference in projection onto the z-axis between the first and the last residue of that hypothetical span. (3) Since sometimes the secondary structure definition in the membrane is error-prone, two spans are connected into a single span if there are up to two loop residues in between and if the start/end vectors are parallel, i.e. they have the same orientation in the membrane. If the latter is not the case, then the two spans have an antiparallel in/out orientation and are considered as two separate spans.

The file format is given below:

Rosetta-generated spanfile from SpanningTopology object
2 80
antiparallel
n2c
 13 33
 53 76

The first line is the header as a single line of text. The second line contains the total number of spans and the number of residues in the protein. The third and fourth line define the topology in a previous format that was implemented for protein ‘folding’ (or rather: structure prediction) – they should always read antiparallel and n2c, i.e. ‘folding’ from the N- to the C-terminus. Lines 4 to the end of the file describe the start and end residue numbers of each transmembrane span. [Note: in a previous format the start and end residue numbers were added again in columns 3 and 4, these have been discarded in the new format.]

To confirm correctness of the spanfile, we provide the perl script check_spanfile_from_pdb.pl in the /Rosetta/tools/membrane_tools/ directory. This script can be called as

./Rosetta/tools/membrane_tools/check_spanfile_from_pdb.pl 1afo_tr_AB.span 1afo_tr_AB.pdb

[bookmark: _GoBack]It outputs a PyMOL script 1afo_tr_AB.span.pml that loads the PDB file and colors the transmembrane spans orange and the rest of the protein blue. Verification of the spanfile in PyMOL is advisable to avoid downstream modeling errors. If the output in PyMOL looks incorrect, the spanfile needs to be adjusted, which can be easily accomplished with the help of sequence viewer in PyMOL and manual editing of the spanfile.

