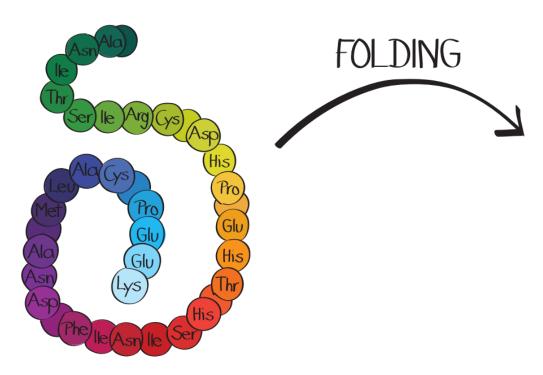
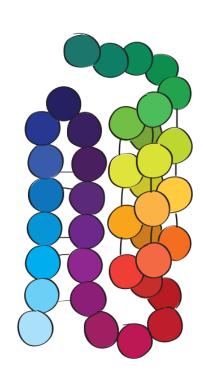
ML in Rosetta (part 1)

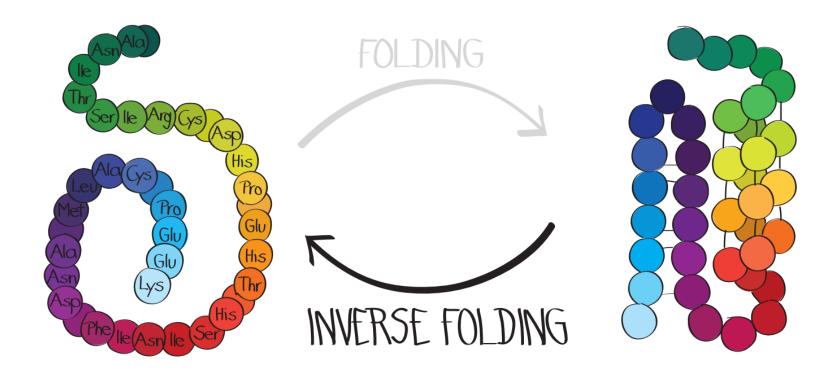
Cristina Elisa Martina Rosetta Workshop 2023 Meiler Lab





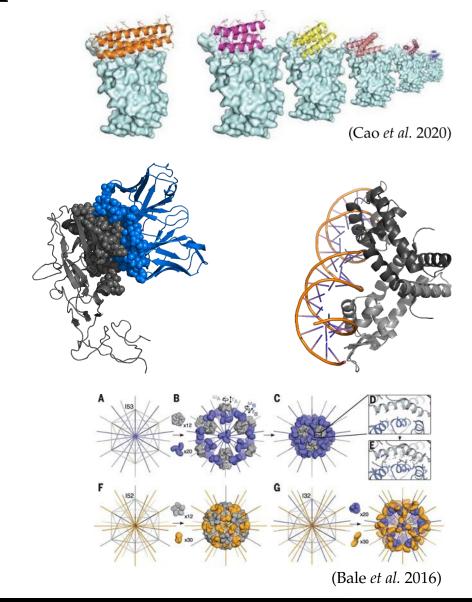
(Art from Ruth Kellner)

Protein design with ML:



What is the best sequence to:

- fold in this protein scaffold?
 - new functions
 - new shapes (de novo design)
- increase protein stability?
 - half-life
 - thermostability
 - crystallizability
 - protein yields
- increase binding to X?
 - protein-protein
 - ligand-protein
 - supramolecular assemblies
- increase enzymatic activity?
 - activity
 - specificity



Computational tools for protein design:

Structure-based methods (Rosetta):

- Starting structure (experimental or model)
- Sampling component
- Scoring component

Machine Learning methods (Protein MPNN):

- Large dataset for training
- Starting sequences, structures or both
- Very fast
- More accurate

Today's ML methods:

Protein MPNN

• Dauparas, J. et al. Robust deep learning based protein sequence design using ProteinMPNN. 2022.06.03.494563 Preprint at https://doi.org/10.1101/2022.06.03.494563 (2022).

MIF-ST

• Yang, K. K., Zanichelli, N. & Yeh, H. Masked inverse folding with sequence transfer for protein representation learning. Protein Engineering, Design and Selection 36, gzad015 (2023).

ESM

- Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences 118, e2016239118 (2021).
- Rao, R. M. et al. MSA Transformer. in Proceedings of the 38th International Conference on Machine Learning 8844–8856 (PMLR, 2021).
- Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

1 Artificial Intelligence

Development of smart systems and machines that can carry out tasks that typically require human intelligence

2 Machine Learning

Creates algorithms that can learn from data and make decisions based on patterns observed

Require human intervention when decision is incorrect

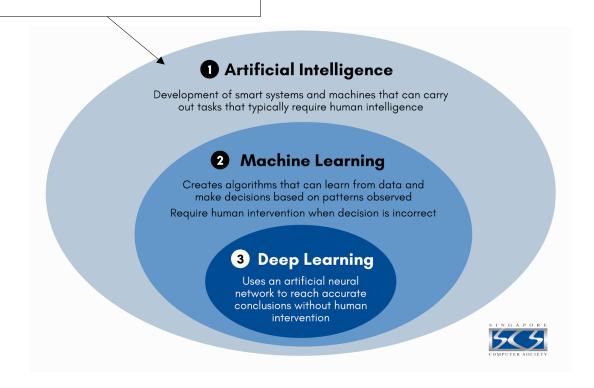
3 Deep Learning

Uses an artificial neural network to reach accurate conclusions without human intervention

1- Artificial Intelligence (since 1950)

Computer programs that do something smart:

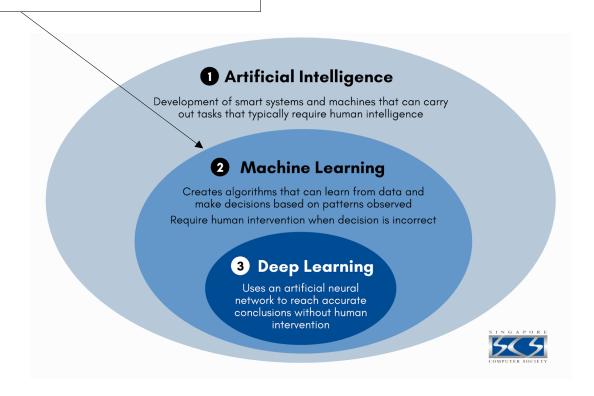
- Chatbots
- Search engines (Chess)
- Translator (old school)



2- Machine Learning (since 1980)

Computer programs that learn something:

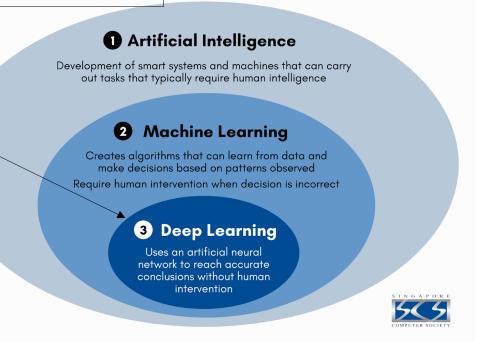
- Personal Assistants (Siri, Alexa)
- Malware filtering
- Translator (new ones)

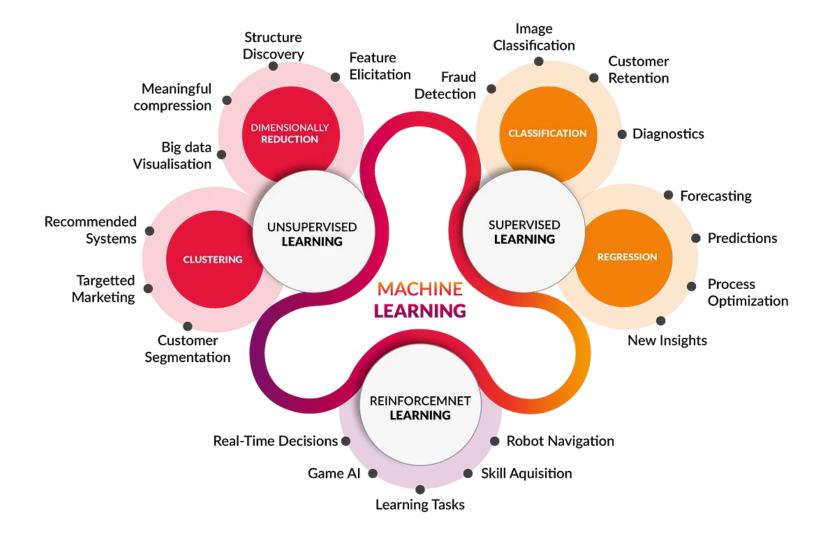


3- Deep Learning (since 2010)

Computer programs that learn from large unstructured data and use neural networks.

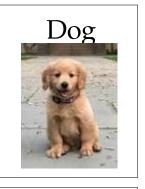
- ChatGPT
- Driveless car
- Google map / Waze

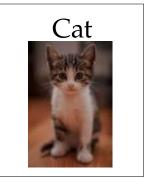




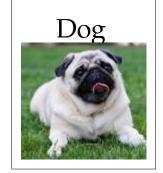
Supervised learning:

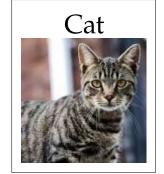






We define in the training set what is cat and what is dog.





Supervised learning:

Training set labeled!

We define in the training set what is cat and what is dog.

The model will learn from the dataset and predict correctly with out testing case.

DOG

Unsupervised learning:

Training set NOT labeled!

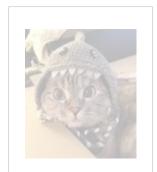
Unsupervised learning:

Training set NOT labeled!

We have a large dataset without labes. The model will learn and cluster from the dataset and predict correctly.

Unsupervised learning:

Training set NOT labeled!



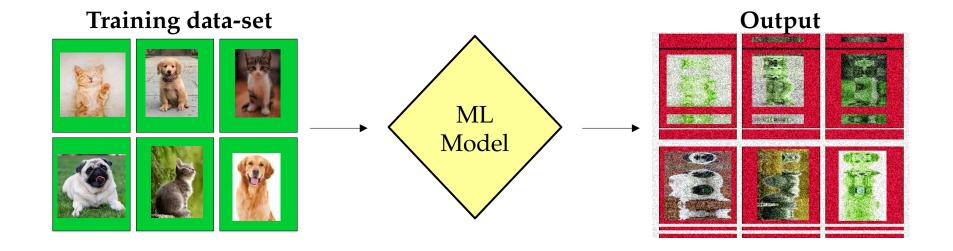
We have a large dataset without labes. The model will learn and cluster from the dataset and predict correctly.

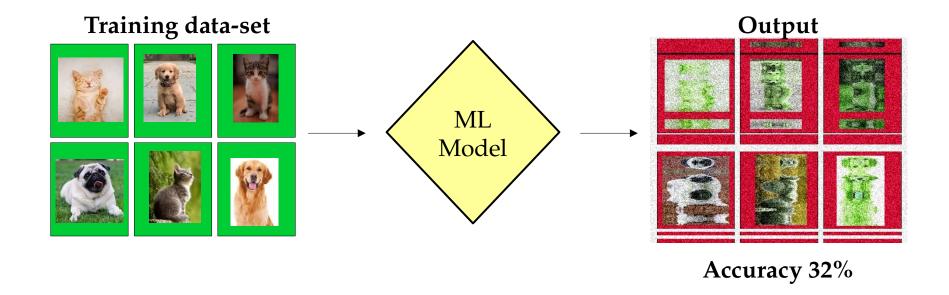
Training data-set

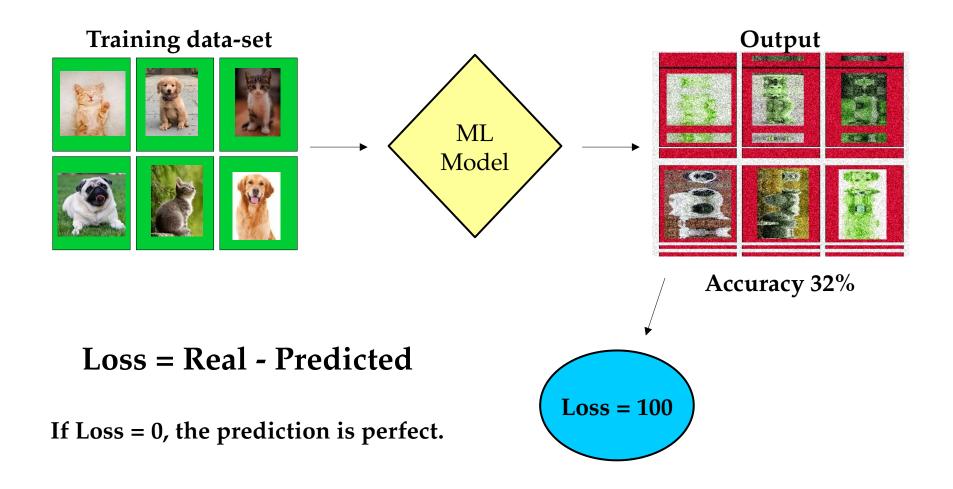


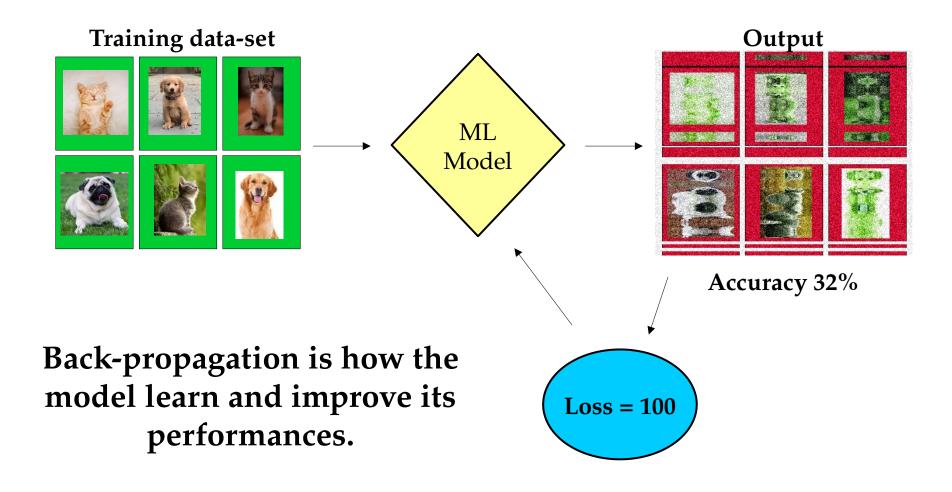
The data-set is divided in two groups:

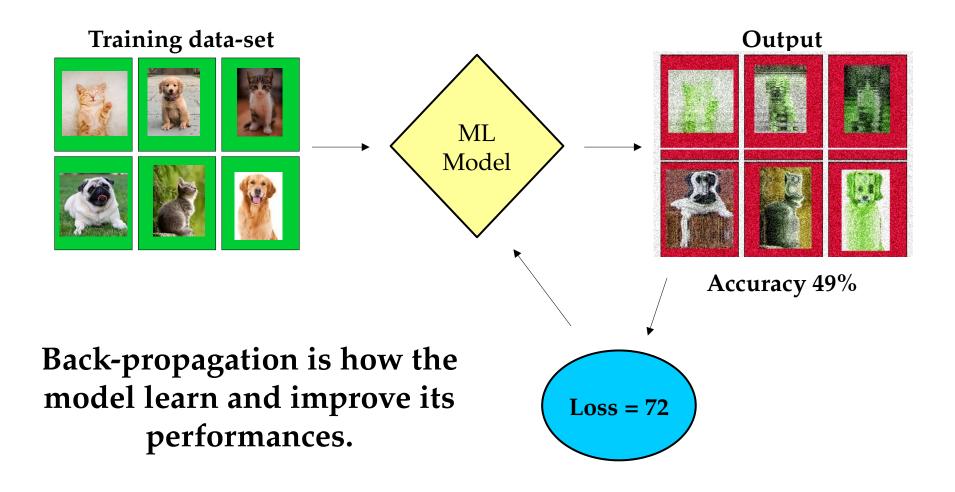
- Training data-set used to train the model (learn)
- Testing data-set used to evaluate the performances with unseen data (predict)
- Generally the training is 80% and the testing is 20% of the full data-set
- Performances are obtained from the testing data-set

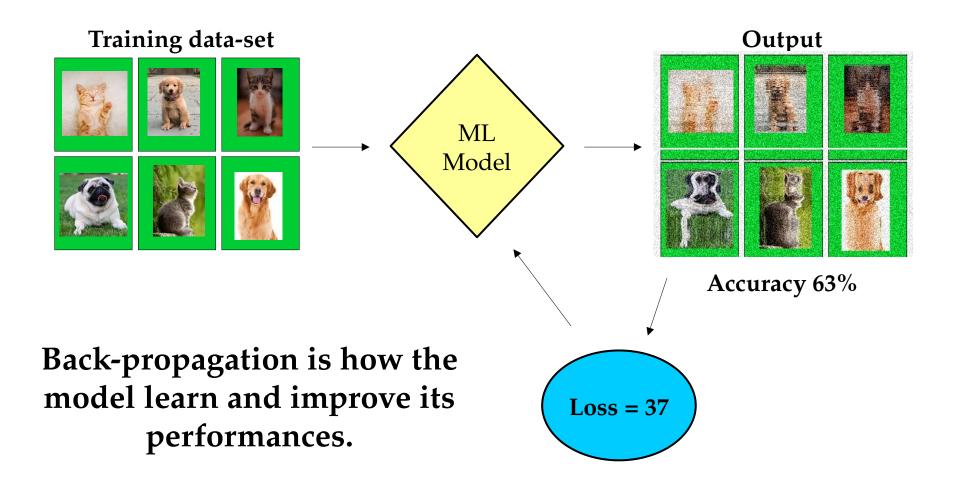


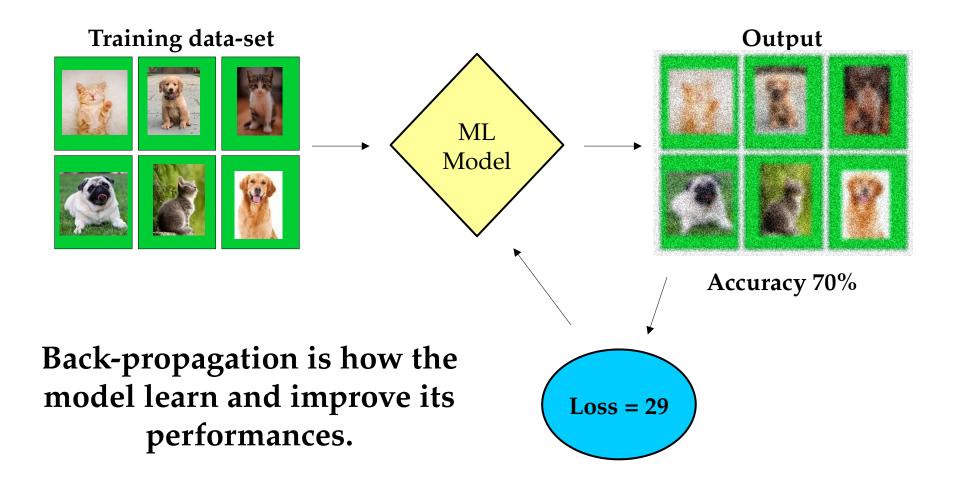


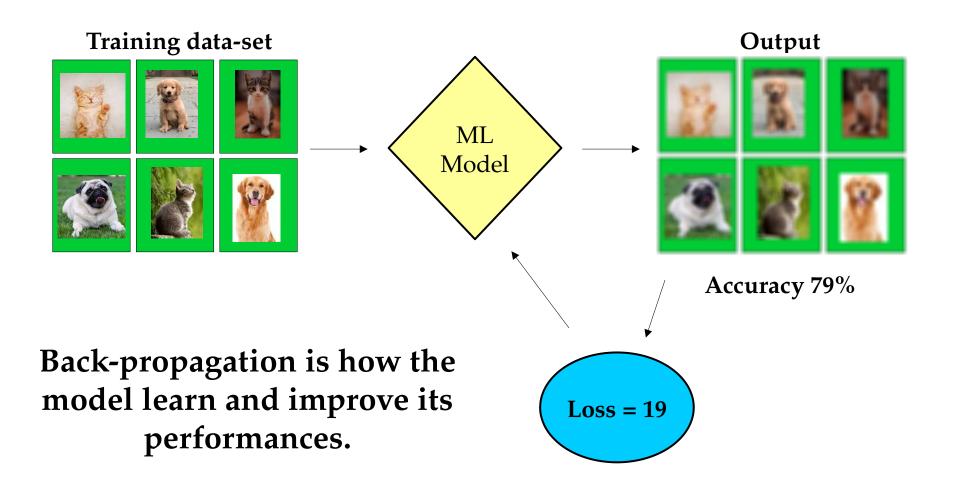


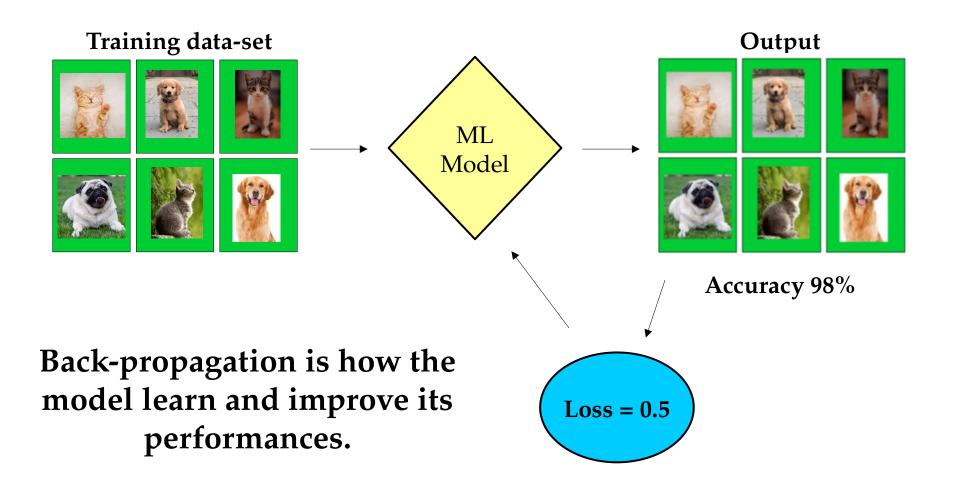


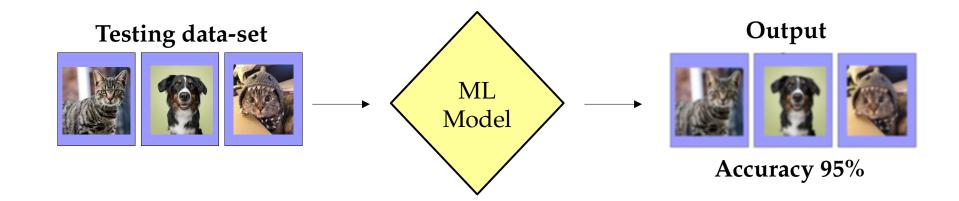












ML in Rosetta (part 2)

Cristina Elisa Martina Rosetta Workshop 2023 Meiler Lab

Protein MPNN (Message Passing Neural Network):

Trained on protein structures from RCSB-PDB:

- 19700 protein structures
- include complexes (homo- and hetero-oligomers)

Predict probabilities of each natural aa for each position

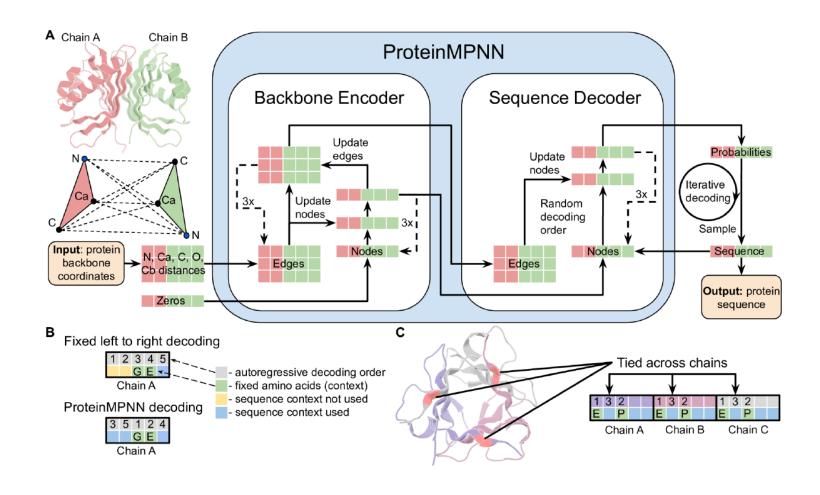
Use probabilities to design sequences

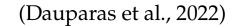
Tested in silico:

- 690 monomers
- 732 homomers
- 98 heteromers

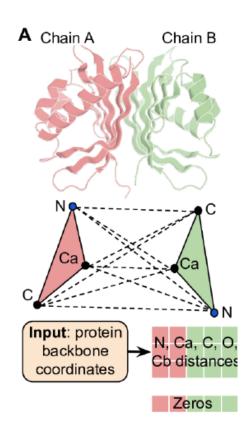
Tested experimentally

Protein MPNN:





Protein MPNN, inputs:



RCSB-PDB database (19K)

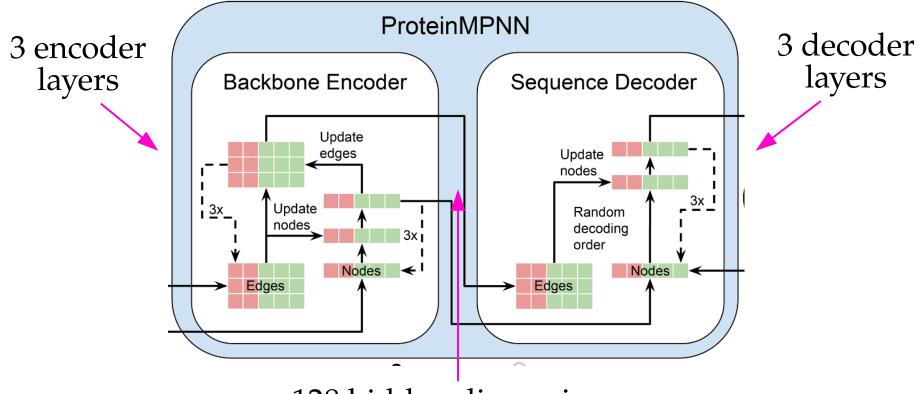
No evolutionary information!

Distances between N, C α , C, O and virtual C β are encoded using graph theory:

- Nodes (atoms)
- Edges (distances)

(Dauparas et al., 2022)

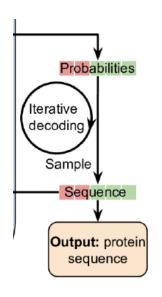
Protein MPNN, the MPNN:



128 hidden dimensions (here is where predictions happen)

(Dauparas et al., 2022)

Protein MPNN, the outputs:

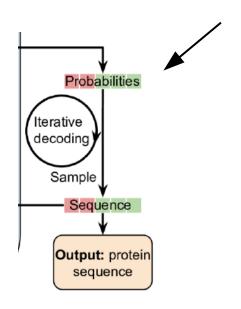


Protein MPNN outputs re-designed sequences, not structures!

This means that then you have to design a structure with an alternative method (AF, Rosetta)

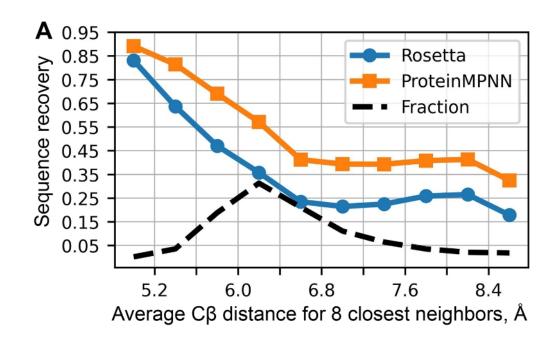
(Dauparas et al., 2022)

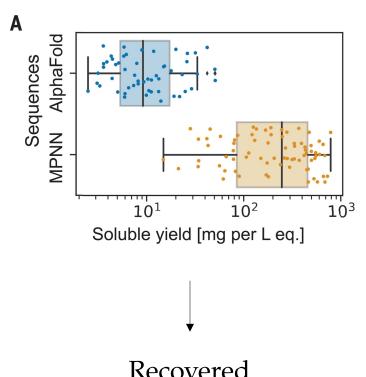
Protein MPNN, the outputs:

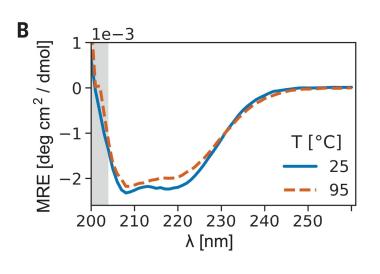


Protein MPNN in Rosetta takes the probabilities as outputs, and uses it for designing the structure directly!

Monomer design (N=408)

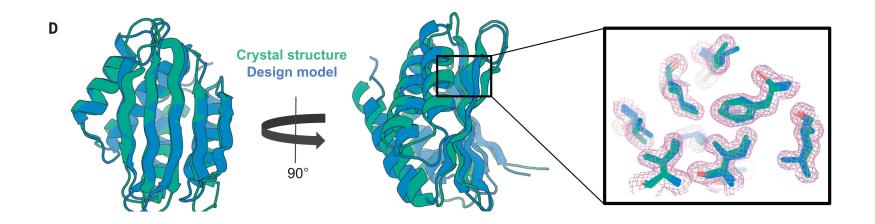


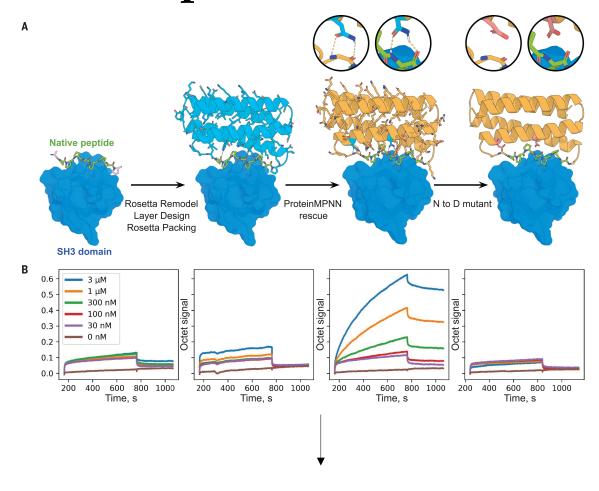




Recovered **solubility**

Increased **thermostability**





Create **new functions**

MIF-ST (Masked Inverse Folding with Sequence Transfer):

Pre-trained on both protein structures and sequences:

- 19700 protein structures from RCSB-PDB
- 42 M sequences from UniRef50
- sequences are masked
- predict masked aa

Training for downstream task

- train on single mutant and predict multi mutants
- predict experimental measurements

Tested *in silico* on small and large data-sets:

- Deep mutational scans
- Enzymatic activity
- Stability
- Binding

Masking in ML:

Nucleotides are the building blocks of DNA.

Masking in ML:

Nucleotides are the building blocks of DNA.

are the building blocks of proteins.

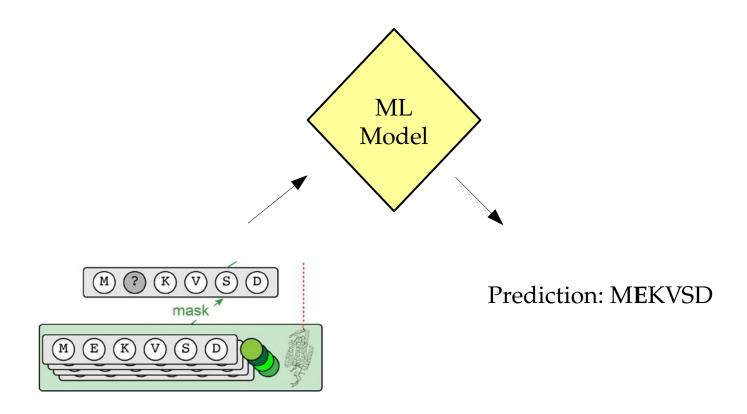
Prediction: = Amino acids

Masking in ML:

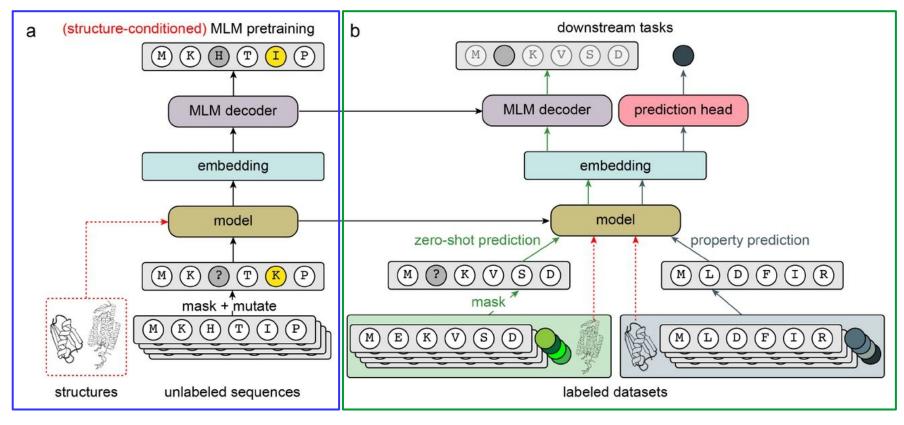
Nucleotides are the building blocks of DNA. Amino acids are the building blocks of proteins.

Correct prediction!

Masking protein sequences in ML:



MIF-ST:

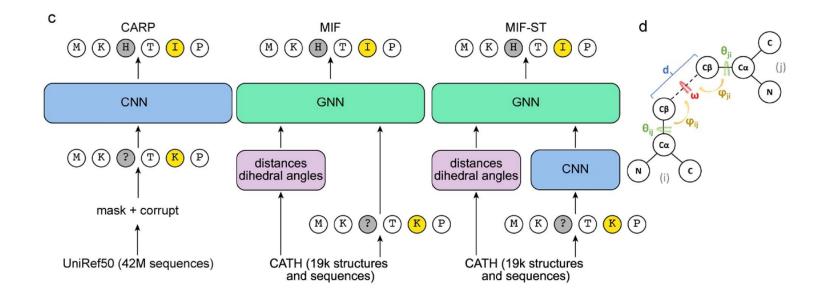


Pre-training (structures, sequences, maskings)

Training (sequences, masking)

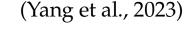
(Yang et al., 2023)

MIF-ST:



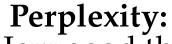
CNN = Convolutional Neural Network (ordered data, N to C term of sequence)

GNN = Graph Neural Network (unordered data, atom in the space)



MIF-ST, performances:

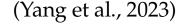
Regime	Model	Parameters	Perplexity	Recovery
Sequence only	CARP-640M	640M	7.06	40.5%
Sequence & structure	MIF-4	3.4M	4.95	49.9%
	MIF-8	6.8M	5.00	46.7%
	GVPMIF	3.5M	4.68	51.2%
+Sequence transfer	MIF-ST	3.4M	4.08	55.6%
-UniRef50 pretraining	MIF-ST	3.4M	5.70	45.4%



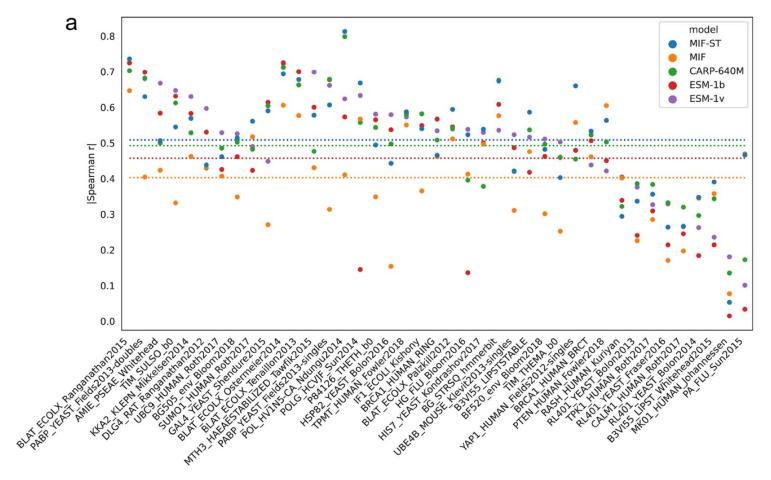
How good the prediction is. (lower the better)

Sequence Recovery:

How well the model recovers native sequences. (higher the better)



MIF-ST, performances:



Predictions on DMS datasets:

MIF-ST is outperforming in many cases.

(Yang et al., 2023)

ESM (Evolutionary Scale Modeling):

Trained on protein sequences:

- 250 M sequences from UniParc
- Also using masking techniques

Evaluated on sequences from UniRef:

- Low-diversity data-set with UniRef100
- High-diversity sparse data-set with UniRef50 representative
- High-diversity dense data-set with UniRef50 clusters

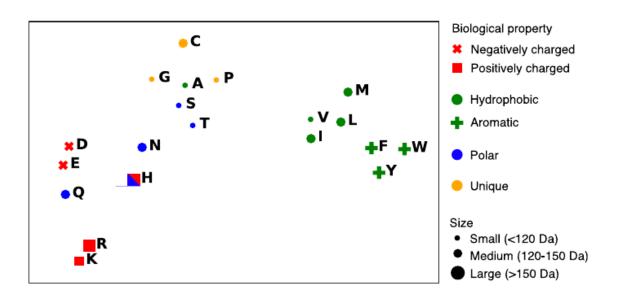
Tested *in silico* to predict:

- Physio-chemical properties of aa
- Biological variation
- Protein homology and family
- Secondary and <u>tertiary structures</u>
- Effects of mutations

(Lin et al., 2023)

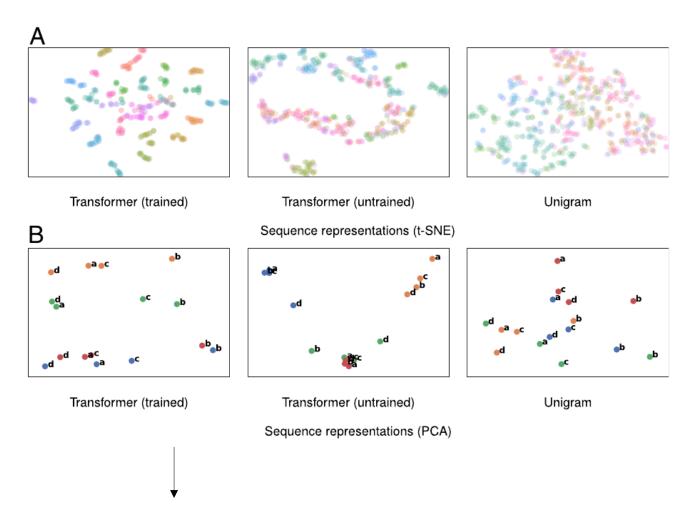
(Verkuil et al., 2022)

Experimental validation (*de novo* design - BioRvix)



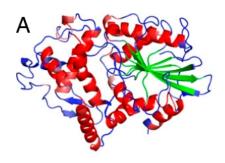
Cluster aa by properties

(Rives et al., 2021)

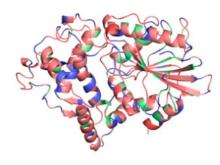


Cluster genes by variants

(Rives et al., 2021)

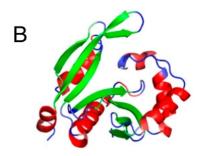


With pre-training 8-class Acc: 70.6%



No pre-training 8-Class Acc: 36.6%

d1nt4a_ (Phosphoglycerate mutase-like fold)



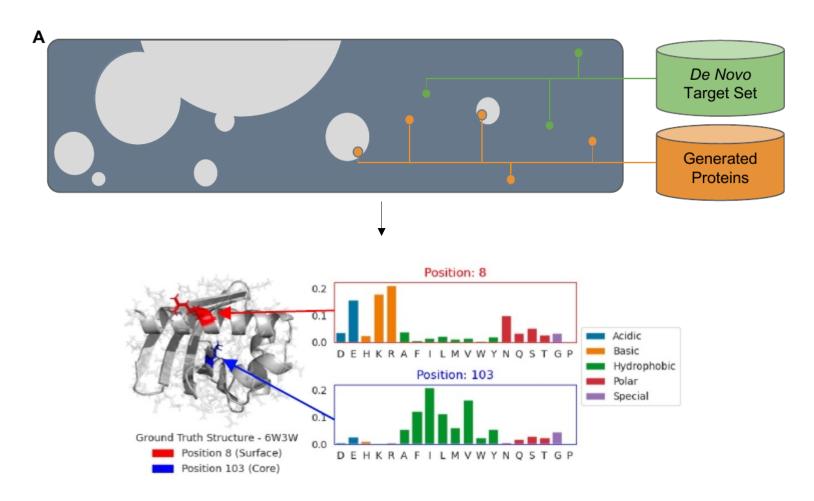
With pre-training 8-class Acc: 82.4%

No pre-training 8-class Acc: 32.4%

Predict secondary structures

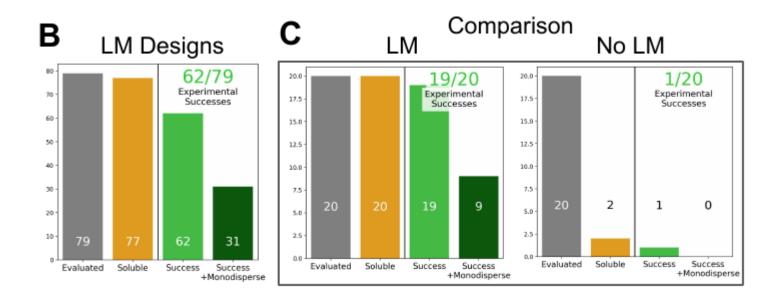
Helices Strands Loops

(Rives et al., 2021)

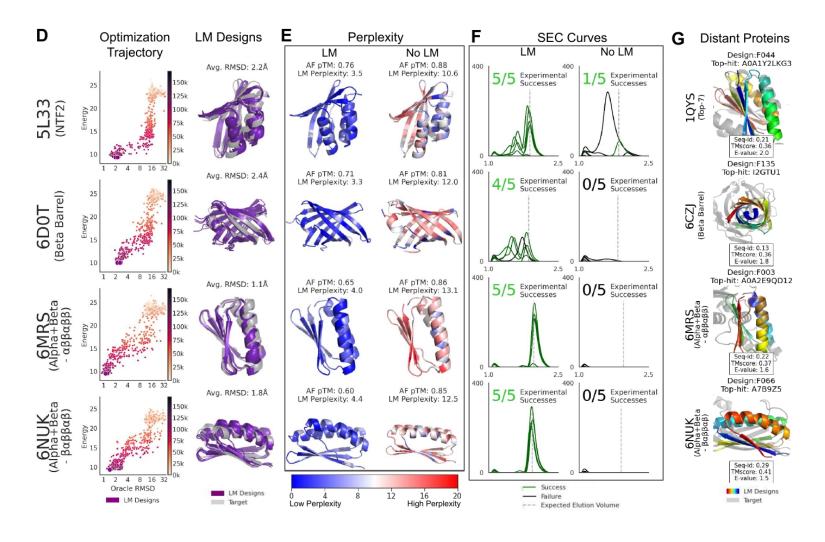


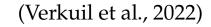
Probabilities!

(Verkuil et al., 2022)



(Verkuil et al., 2022)





ML in Rosetta:

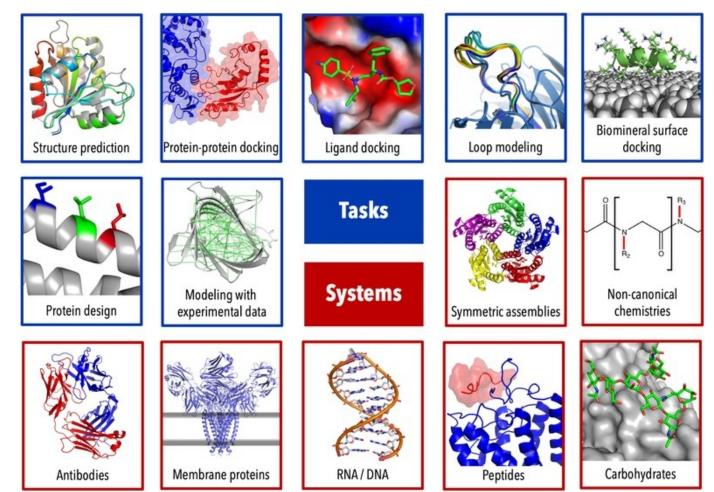
The hero here:

Moritz Ertelt
PhD student in Meiler lab at
Leipzig University

Contact: moritz.ertelt@uni-leipzig.de

ML in Rosetta:

Why integrating protein ML methods in Rosetta?



(Koehler-Lehman et al. 2020)

ML in Rosetta:

Why integrating protein ML methods in Rosetta?

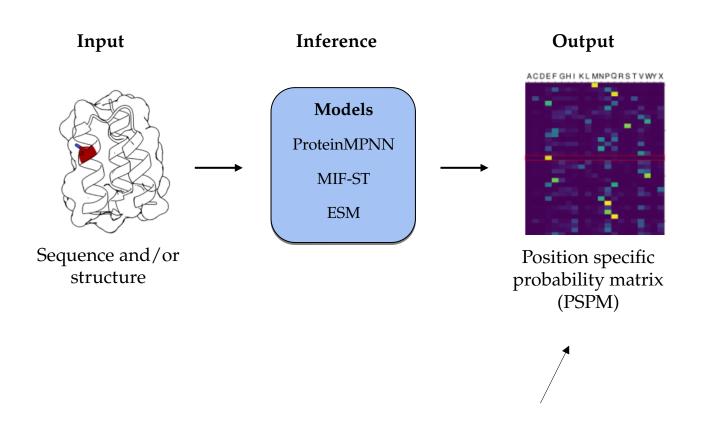
- + Feature calculation is fast in C++
- + No knowledge of Python needed for RosettaScripts
- + Makes it easy to combine ML with Rosetta elements
- + No need to reinvent the wheel for sampling, scoring, etc.
- + Provides an established testing framework

ML in Rosetta, how:

- Link Rosetta against PyTorch/TensorFlow
- Re-create feature calculation & inference in Rosetta
- Standardize output in Rosetta
- Create tools around the standardized output in Rosetta

```
./scons.py -j 14 bin mode=release extras=pytorch,tensorflow
```


ML in Rosetta Design:



Referred in the tutorial as "Probabilities"

ML in Rosetta Design, analysis tools:

Analysis in Rosetta:

CurrentProbabilityMetric

<u>AverageProbabilitiesMetric</u>

ProbabilityConservationMetric

<u>BestMutationsFromProbabilitiesMetric</u>

Returns the probabilities for the sequence in the pose.

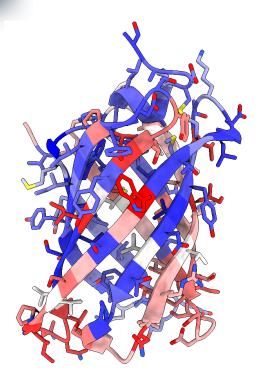
Average probabilities (i.e. from protein MPNN and ESM).

Calculate conservation for each position from probabilities. Ranges from 0 (no conservation) to 1 (fully conserved).

Return the most likely mutation(s) for a given position.

ML in Rosetta Design, analysis tools:

The probabilities for the sequence are saved in the b-factor column of the pdb and can be easily visualized with pymol/chimera.



ML in Rosetta Design, design tools:

Sampling Mutations in Rosetta:

FavorSequenceProfile

<u>RestrictAAsFromProbabilities</u>

<u>SampleSequenceFromProbabilities</u>

Constrain the sampling with info from the probabilities.

Restrict sampling to aa at least as likely as the current one from probabilities.

Sample aa from probabilities.

ML in Rosetta Design, design tools:

```
- Sample 10 positions
```

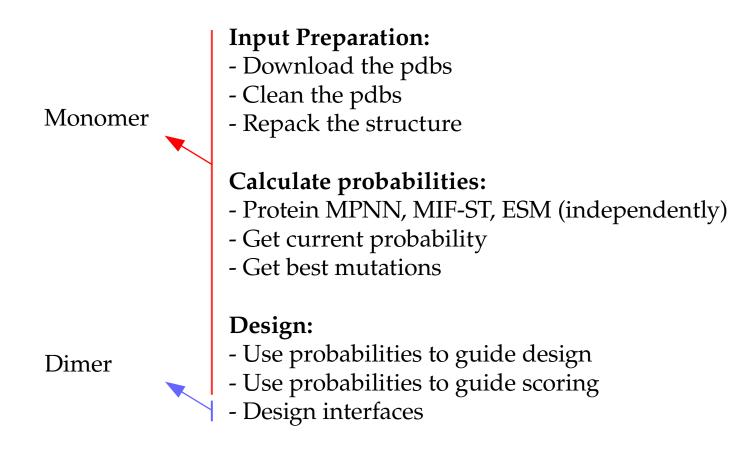
- Sample aa with p>0.1

- At least as likely as the current aa

```
(max_mutations="10")
```

(delta_prob_cutoff="0.0")

The tutorial:



Bibliography - ML in Rosetta:

- Yang, K. K., Zanichelli, N. & Yeh, H. **Masked inverse folding with sequence transfer for protein representation learning**. Protein Engineering, Design and Selection 36, gzad015 (2023).
- Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
- Hie, B. L. et al. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol 1–9 (2023)
- Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. (2023).
- Verkuil, R. et al. Language models generalize beyond natural proteins. 2022.12.21.521521 (2022).
- Dauparas, J. et al. Robust deep learning based protein sequence design using ProteinMPNN. 2022.06.03.494563 (2022).
- Rives, A. et al. **Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.** Proceedings of the National Academy of Sciences 118, e2016239118 (2021).
- Rao, R. M. et al. **MSA Transformer.** in Proceedings of the 38th International Conference on Machine Learning 8844–8856 (PMLR, 2021).
- Jumper, J. et al. **Highly accurate protein structure prediction with AlphaFold.** Nature 1–11 (2021) doi:10.1038/s41586-021-03819-2.
- Sculley, D. et al. Machine Learning: The High-Interest Credit Card of Technical Debt.

