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Protein design with ML.:

INVERST TOLDING

V (Art from Ruth Kellner)
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What is the best sequence to:

fold in this protein scaffold?
- new functions
- new shapes (de novo design)

* increase protein stability?
- half-life
- thermostability
- crystallizability
- protein yields

increase binding to X?
- protein-protein
- ligand-protein
- supramolecular assemblies

* increase enzymatic activity?
- activity DS - — b
- specificity /a7 e o s

V (Bale et ﬂl. 2016)



Computational tools for protein design:

Structure-based methods (Rosetta):
- Starting structure (experimental or model)
- Sampling component

- Scoring component

Machine Learning methods (Protein MPNN):
- Large dataset for training

- Starting sequences, structures or both

- Very fast

- More accurate
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Today’s ML methods:

Protein MPNN

* Dauparas, J. et al. Robust deep learning based protein sequence design using ProteinMPNN.
2022.06.03.494563 Preprint at https://doi.org/10.1101/2022.06.03.494563 (2022).

MIF-ST

* Yang, K. K., Zanichelli, N. & Yeh, H. Masked inverse folding with sequence transfer for
protein representation learning. Protein Engineering, Design and Selection 36, gzad015 (2023).

ESM

* Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning
to 250 million protein sequences. Proceedings of the National Academy of Sciences 118,
e2016239118 (2021).

* Rao, R. M. et al. MSA Transformer. in Proceedings of the 38th International Conference on
Machine Learning 8844-8856 (PMLR, 2021).

* Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language
model. Science 379, 1123-1130 (2023).
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General info on ML:

© Ariificial Intelligence

Development of smart systems and machines that can carry
out tasks that typically require human intelligence

© Deep Learning

Uses an artificial neural
network to reach accurate
conclusions without human

infervention

COMPUTER

SOCIETY
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General info on ML:

1- Artificial Intelligence (since 1950)
Computer programs that do something smart:
* Chatbots

* Search engines (Chess)

* Translator (old school)

\ © Arificial Intelligence

Development of smart systems and machines that can carry
out tasks that typically require human intelligence

© Deep Learning

Uses an artificial neural
network to reach accurate
conclusions without human

intervention




General info on ML:

2- Machine Learning (since 1980)
Computer programs that learn something:
* Personal Assistants (Siri, Alexa)

* Malware filtering

* Translator (new ones)

© Arificial Intelligence

Development of smart systems and machines that can carry
out tasks that typically require human intelligence

© Deep Learning

Uses an artificial neural
network to reach accurate
conclusions without human

intervention




General info on ML:

3- Deep Learning (since 2010)

Computer programs that learn from large
unstructured data and use neural networks.

* ChatGPT

* Driveless car

* Google map / Waze

© Arificial Intelligence

Development of smart systems and machines that can carry
out tasks that typically require human intelligence

© Deep Learning

Uses an artificial neural
network to reach accurate
conclusions without human

intervention




General info on ML:
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http://www.cognub.com/index.php/cognitive-platform/

Supervised learning:

Training set labeled!

We define in the training set
what is cat and what is dog.
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Supervised learning:
Training set labeled!

We define in the training set
what is cat and what is dog.
Test case

— TR
74 &

The model will learn from the
dataset and predict correctly
with out testing case.

DOG
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Unsupervised learning:

Training set NOT
labeled!
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Unsupervised learning:

Training set NOT
labeled!

We have a large dataset without
labes. The model will learn and
cluster from the dataset and
predict correctly.
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Unsupervised learning:

Training set NOT
labeled!

We have a large dataset without
labes. The model will learn and
cluster from the dataset and
predict correctly.
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How the learning happens:

The data-set is divided in two
groups:

- Training data-set used to train
the model (learn)

- Testing data-set used to evaluate
the performances with unseen

data (predict)

- Generally the training is 80%
and the testing is 20% of the full
data-set

- Performances are obtained from
the testing data-set
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How the learning happens:

Training data-set
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How the learning happens:

Training data-set

4’ —_— _'

Accuracy 32%
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How the learning happens:

Training data-set

/ Accuracy 32%

Loss = Real - Predicted

If Loss = 0, the prediction is perfect.
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How the learning happens:

Training data-set

\ / Accuracy 32%

Back-propagation is how the
model learn and improve its
performances.
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How the learning happens:

Training data-set Output

\ / Accuracy 49%

Back-propagation is how the
model learn and improve its
performances.
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How the learning happens:

Training data-set Output

\ / Accuracy 63%
Back-propagation is how the
model learn and improve its

performances.
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How the learning happens:

Training data-set Output

\ / Accuracy 70%

Back-propagation is how the
model learn and improve its
performances.
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How the learning happens:

Training data-set Output

. m
\ / Accuracy 79%

Back-propagation is how the
model learn and improve its
performances.
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How the learning happens:

Training data-set Output

..
VAL
\ / Accuracy 98%

ol

Back-propagation is how the
model learn and improve its
performances.
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How the learning happens:

Testing data-set

Output

— a

Accuracy 95%
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Protein MPNN (Message Passing Neural
Network):

Trained on protein structures from RCSB-PDB:

- 19700 protein structures

- include complexes (homo- and hetero-oligomers)
Predict probabilities of each natural aa for each position
Use probabilities to design sequences
Tested in silico:

- 690 monomers

- 732 homomers

- 98 heteromers

Tested experimentally




Protein MPNN:
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(Dauparas et al., 2022)




Protein MPNN, inputs:

A Chain A Chain B

-

Input: protein
backbaone
coordinates

N, Ca, C, O,
Cb distances

Zeros

RCSB-PDB database (19K)

No evolutionary information!

Distances between N, Ca, C, O
and virtual CP are encoded using
graph theory:

- Nodes (atoms)
- Edges (distances)

(Dauparas et al., 2022)
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Protein MPNN, the MPNN:

3 encoder
layers

.

/

/Backbone Encoder\

ProteinMPNN
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( Sequence Decodem

\

3 decoder
layers

A
.
|
v

Nodes ==

Update
nodes

Random
decoding
order

e

> Edges

128 hidden dimensions
(here is where predictions happen)

(Dauparas et al., 2022)
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Protein MPNN, the outputs:

Probabilities

Iterative
decoding

Sample

Y
Sequence

Output: protein
sequence

Protein MPNN outputs
re-designed sequences,
not structures!

This means that then you
have to design a structure
with an alternative

method (AF, Rosetta)

(Dauparas et al., 2022)




Protein MPNN, the outputs:

—

Probabilities

Iterative
decoding

Sample
Y

Sequence

Output: protein
sequence

Protein MPNN in Rosetta takes
the probabilities as outputs,
and uses it for designing the

structure directly!

(Dauparas et al., 2022)




Protein MPNN, performances:

Monomer design (N=408)
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(Dauparas et al., 2022)




Protein MPNN, performances:
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(Dauparas et al., 2022)




Protein MPNN, performances:

_ Crystal structure
Design model

|

Increased
crystallizability

(Dauparas et al., 2022)
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Protein MPNN, performances:

A
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(Dauparas et al., 2022)
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MIF-ST (Masked Inverse Folding with
Sequence Transfer):

Pre-trained on both protein structures and sequences:
- 19700 protein structures from RCSB-PDB
- 42 M sequences from UniRef50
- sequences are masked
- predict masked aa
Training for downstream task
- train on single mutant and predict multi mutants
- predict experimental measurements
Tested in silico on small and large data-sets:
- Deep mutational scans
- Enzymatic activity
- Stability
- Binding

Vv
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Masking in ML:

Nucleotides are the building blocks of DNA.
B a:c the building blocks of proteins.
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Masking in ML:

Nucleotides are the building blocks of DNA.
B a:c the building blocks of proteins.

Prediction: _ = Amino acids
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Masking in ML:

Nucleotides are the building blocks of DNA.
Amino acids are the building blocks of proteins.

Correct prediction!
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Masking protein sequences in ML:
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MIF-ST:

structures

a (structure-conditioned) MLM pretraining b downstream tasks
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(Yang et al., 2023)
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MIF-ST:

c

CARP MIF MIF-ST
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CNN = Convolutional Neural Network
(ordered data, N to C term of sequence)

GNN = Graph Neural Network
(unordered data, atom in the space)

(Yang et al., 2023)
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MIF-ST, performances:

Regime Model Parameters Perplexity Recovery
Sequence only CARP-640M 640M 7.06 40.5%
Sequence & structure MIF-4 3.4M 4.95 49.9%
MIF-8 6.8M 5.00 46.7%
GVPMIF 3.5M 4.68 51.2%
+Sequence transfer MIF-ST 3.4M 4.08 55.6%
—UniRef50 pretraining MIF-ST 3.4M 5.70 45.4%
Perplexity: Sequence Recovery:
How good the How well the model
prediction is. recovers native sequences.

(lower the better) (higher the better)

(Yang et al., 2023)
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MIF-ST, performances
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ESM (Evolutionary Scale Modeling):

Trained on protein sequences:
- 250 M sequences from UniParc
- Also using masking techniques
Evaluated on sequences from UniRef:
- Low-diversity data-set with UniRef100
- High-diversity sparse data-set with UniRef50 representative
- High-diversity dense data-set with UniRef50 clusters
Tested in silico to predict:
- Physio-chemical properties of aa
- Biological variation
- Protein homology and family
- Secondary and tertiary structures —— > (Lin et al, 2023)
- Effects of mutations (Verkuil et al., 2022)

Experimental validation (de novo design - BioRvix) v

Vv
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ESM, performances:
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Cluster aa by
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Biclogical property
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@ Hydrophobic
&= Aromatic

@ Polar

Unigue

Size
* Small (<120 Da)
® Medium (120-150 Da)

@ Large (=150 Da)

(Rives et al., 2021)
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ESM, performances:

A

Transformer (trained) Transformer (untrained) Unigram
B Sequence representations (t-SNE)
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Cluster genes by variants
(Rives et al., 2021)
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ESM, performances:

With pre-training
8-class Acc: 70.6%

No pre-training
8-Class Acc: 36.6%

dint4a_ (Phosphoglycerate mutase-like fold)

With pre-training
8-class Acc: 82.4%

No pre-training
8-class Acc: 32.4%

Predict secondary
structures

Helices

Strands
Loops

(Rives et al., 2021)
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ESM, performances:

Pasition: 8

0.0 \..I._I_I_-A-‘-_-_I_._l‘..J . Acidic
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o mm Hydrophobic
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mm Special

Ground Truth Structure - GW3IW

B Fosition 8 (Surface) DEHERAFILMYWYNOQSTGEP
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Probabilities!
(Verkuil et al., 2022)




ESM, performances:

LM Designs
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(Verkuil et al., 2022)
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ESM, performances:
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ML in Rosetta:

The hero here:

Moritz Ertelt
PhD student in Meiler lab at
Leipzig University

Contact:
moritz.ertelt@uni-leipzig.de
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ML in Rosetta:

Why integrating protein ML methods in Rosetta?

=W,
J.Jh(ﬁ_ "é‘h

Ty

G kg
B r!,;—? ??'{
RAEAAT

Biomineral surface
docking

Ligand docking

Modeling with
Protein design experimental data

Mon-canonical
chemistries

Antibodies

Membrane proteins

RNA/DNA

Peptides Carbohydrates

(Koehler-Lehman et al. 2020)




ML in Rosetta:

Why integrating protein ML methods in Rosetta?

+ Feature calculation is fast in C++
+ No knowledge of Python needed for RosettaScripts

+ Makes it easy to combine ML with Rosetta elements

+ No need to reinvent the wheel for sampling, scoring, etc.

+ Provides an established testing framework

30



ML in Rosetta, how:

* Link Rosetta against PyTorch/TensorFlow
* Re-create feature calculation & inference in Rosetta
* Standardize output in Rosetta

* Create tools around the standardized output in Rosetta

./scons.py -] bin mode=release extras=pytorch,tensorflow
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ML in Rosetta Design:

Input Inference Output

ACDEFGHI KL MNPORSTVWY X

4 Models )

ProteinMPNN
—_— e
MIF-ST
\ ESM j
Sequence and/or Position specific

structure probability matrix

(PSPM)

-

Referred in the tutorial as “Probabilities”




ML in Rosetta Design, analysis tools:

a

Analysis in Rosetta:

CurrentProbabilityMetric

AverageProbabilitiesMetric

ProbabilityConservationMetric

\

R

e

\BestMutationsFromProbabilitiesMetric/

N\

Returns the probabilities for
the sequence in the pose.

Average probabilities
(i.e. from protein MPNN
and ESM).

Calculate conservation for
each position from
probabilities. Ranges from 0
(no conservation) to 1 (fully
conserved).

Return the most likely
mutation(s) for a given
position.

Vv
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ML in Rosetta Design, analysis tools:

<SIMPLE_METRICS>
<ProteinMPNNProbabilitiesMetric name="prediction" />
<CurrentProbabilityMetric name="current" metric="prediction" />

</SIMPLE_METRICS>

The probabilities for the sequence are saved
in the b-factor column of the pdb and can be
easily visualized with pymol/chimera.
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ML in Rosetta Design, design tools:

Sampling Mutations in Rosetta:
FavorSequenceProfile

RestrictA AsFromProbabilities

SampleSequenceFromProbabilities

/

Constrain the sampling with
info from the probabilities.

Restrict sampling to aa at
least as likely as the current
one from probabilities.

Sample aa from
probabilities.
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ML in Rosetta Design, design tools:

<TASKOPERATIONS>
<ReadResfile name="rrf" filename="./resfile.resfile" />

</ TASKOPERATIONS>

<SIMPLE_METRICS>
<PerResidueEsmProbabilitiesMetric name="esm" residue_selector="res"
model="esm2_t33_650M_UR50D" />

</SIMPLE_METRICS>

<MOVERS>

<SampleSequenceFromProbabilities name="sample" metric="esm" pos_temp="0.1"
aa_temp="0.1" prob_cutoff="0.1" delta_prob_cutoff="0.0" max_mutations="10"
task_operations="rrf" use_cached_data="tzrue" />

</MOVERS>

- Sample 10 positions (max mutations="10")
- Sample aa with p>0.1 (prob cutoff="0.1")
- At least as likely as the current aa (delta prob cutoff="0.0")

Vv
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The tutorial:

Monomer

Dimer

haN

™

Input Preparation:
- Download the pdbs

- Clean the pdbs
- Repack the structure

Calculate probabilities:

- Protein MPNN, MIF-ST, ESM (independently)
- Get current probability

- Get best mutations

Design:

- Use probabilities to guide design
- Use probabilities to guide scoring
- Design interfaces
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