Rosetta Overview: IO and Navigating Rosetta

Abdullah Al Mamun Postdoctoral fellow | Meiler Lab Abdullah.al.mamun@Vanderbilt.edu

Goals for this Talk

- 1. General Rosetta Concepts:
 - How do I run basic Rosetta applications?
 - Input/Output: file types, options, etc.
- 2. Learn where things are in Rosetta
 - Your working directory is independent of these Rosetta directories (AKA your data is stored outside of Rosetta)

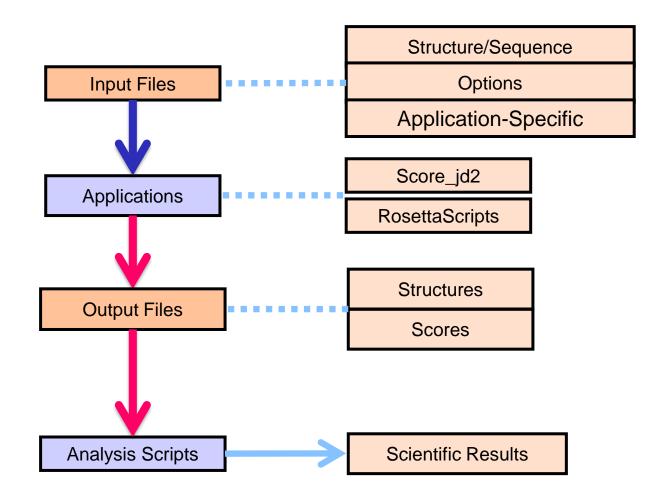
QUESTIONS ARE ENCOURAGED!

This talk is located in: ~/rosetta_workshop/tutorials/short_talks/Overview_Rosetta_IO.pptx

Example files are located in: Files for this talk are in ~/rosetta_workshop/tutorials/short_talks/RosettaIO/

Notice these files are located outside of Rosetta--you do NOT want to store your input/output files in the Rosetta directories

Tip: Open each file in your favorite text editor (gedit, vi, emacs, etc.) as we introduce them through the talk



How do I get Rosetta?

- https://www.rosettacommons.org/software/license-and-download
- Weekly Releases: (e.g. "2023.11")
 - Latest version of the code, released roughly every week
 - Every revision passes scientific performance tests
- Numbered Releases (e.g. "2023.45")
 - A weekly release that's relabeled, released roughly every 6 months
- All tutorials use version 2023.45
- Links to documentation, forum and demos:
 - https://www.rosettacommons.org/docs/latest/Home
 - https://www.rosettacommons.org/demos/latest/Home

General Workflow

How do I run a Rosetta command?

Every command has the same basic layout:

Arguments consist of multiple things:

- 1. Point to input files
- 2. Point to where you want output files to go
- 3. Other arguments are protocol-dependent

Your first Rosetta command:

- cd ~/rosetta_workshop/short_talks/RosettaIO/
- Scoring 1qys (<u>https://www.rcsb.org/structure/1QYS</u>)
- Crystal structure of Top7: A computationally designed protein with a novel told

<path_to_rosetta>/main/source/bin/score_jd2.default.linuxgccrelease --in:file:s 1qys.pdb -out:pdb > 1qys_score.log

- Inputs:
 - Running score_jd2 application, which simply scores in the input protein
 - -in:file:s 1qys.pdb : tells Rosetta we're inputting the 1qys.pdb PDB file
 - -out:pdb argument tells Rosetta that we want to save the output PDB file of the scored protein
 - > 1qys_score.log : print terminal output to file called 1qys_score.log
 - Outputs:
 - Iqys_0001.pdb : output PDB models
 - score.sc : default name for output scorefile
 - 1qys_score.log: tracer of run AKA what is output to the terminal screen when running command

Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold with atomic-level accuracy. *Science*. 2003;302(5649):1364-1368. doi:10.1126/science.1089427

Reading structures into Rosetta

PDB files

- International standard
- Readable by PyMol, MOE, Chimera, etc •
- One line per atom
- Useful for small number of structures

www.wwpdb.org/documentation/file-format

Silent files

- Specific to Rosetta
- Compact
- One line per residue
- Useful for archiving many structures
- Binary silent files: more compact, but not human-readable

https://www.rosettacommons.org/docs /latest/rosetta_basics/file_types/silentfile

V

Common command line arguments

- Common input options:
 - -in:file:s example.pdb ## input a PDB structure file
 - -parser:protocol example.xml ## RosettaScripts XML file
 - -in:file:fasta example.fasta ## input a FASTA sequence file
 - -in:file:silent example.silent ## input a Rosetta silent file
 - -nstruct 50 ## produce 50 output pdb models
- Common output options:
 - -out:file:silent example_out.silent ## output model structures to silent file
 - -out:file:scorefile example_out.sc ## output scorefile for run

Examples of output: the scorefile

score.sc

- One output per line—name of output is in the very last column
- Each column defines a specific score term for the respective output structure
- Second column is the "total_score"
- The following columns are individual scoreterms (described in detail in later talk)
- Excerpt of example scorefile here, but recommend you look at your own score.sc output file

SEQUENCE:												
SCORE:	score	fa_atr	fa_rep	fa_sol	fa_intra_rep	fa_elec		omega	fa_dun	p_aa_pp	ref	description
SCORE:	-1217.209	-2778.696	266.309	1545.149	5.900	-301.320		63.032	684.989	-109.110	-32.534	3gbm_HA_3gbn_Ab_full_0011
SCORE:	-1217.028	-2792.422	263.906	1549.738	5.867	-295.799		66.036	682.694	-108.402	-32.534	3gbm_HA_3gbn_Ab_full_0012
SCORE:	-1204.280	-2760.354	259.175	1534.072	5.913	-293.050		65.391	674.840	-108.393	-32.534	3gbm_HA_3gbn_Ab_full_0013
SCORE:	-1207.127	-2768.191	260.443	1541.857	5.881	-301.847		67.951	686.381	-110.919	-32.534	3gbm_HA_3gbn_Ab_full_0014
SCORE:	-1208.390	-2769.872	262.398	1539.668	5.879	-297.571		64.073	681.731	-109.633	-32.534	3gbm_HA_3gbn_Ab_full_0015
												/

Examples of output: the output PDB

1qys_0001.pdb

- One atom/line just like normal PDBs
- Scroll to the bottom and there is per residue score information

н ATOM 3378 HB THR L 227 -36.166 22.580 28.848 1.00 0.00 АТОМ 3379 HG1 THR L 227 Н -34.994 19.987 29.136 1.00 0.00 ATOM 3380 1HG2 THR L 227 -34 138 22 579 30 246 1 00 0.00 Н н ATOM 3381 2HG2 THR L 227 -35 593 22 831 31 238 1.00 0.00 ATOM 3382 3HG2 THR L 227 -34,799 21,240 31,213 1,00 0.00 н

TER

All scores below are weighted scores, not raw scores.

#BEGIN_POSE_ENERGIES_TABLE 3gbn_Ab_0005.pdb

label fa_atr fa_rep fa_sol fa_intra_rep fa_elec pro_close hbond_sr_bb hbond_lr_bb hbond_bb_sc hbond_sc dslf_fa13 rama omega fa_dun p_aa_pp yhh_planarity ref total weights 1 0.55 0.9375 0.005 0.875 1.25 1.17 1.17 1.17 1.1 1.25 0.25 0.625 0.7 0.4 0.625 1 NA

pose -994.338 137.719 561.027 2.15688 -112.612 19.7634 -12.2069 -79.5391 -24.1449 -23.4441 -1.15166 -7.47192 71.8572 276.633 -29.8673 0.09431 13.9828 -201.541

GLU:NtermProteinFull_1 -1.58225 0.53996 1.45283 0.00353 0.06909 0 0 0 0 0 0 0 0.01109 6.53174 0 0 -1.96094 5.06505

VAL_2 -3.34255 0.45648 1.46378 0.01322 -0.08167 0 0 0 0 0 0 -0.16095 0.87346 0.30715 0.39992 0 0.97964 0.90848

GLN_3 -2.79445 0.10936 1.74929 0.00451 -0.52743 0 0 0 -0.35772 0 0 -0.09682 0.35321 2.59775 0.02034 0 -1.51717 -0.45911


LEU_4 -5.13483 0.73792 1.6574 0.00685 -0.16379 0 0 0 0 0 0 0.06265 0.2281 2.29891 -0.1217 0 0.76113 0.33264

VAL_5 -2.72905 0.12167 1.72074 0.00789 -0.45069 0 0 0 0 0 0 -0.27382 0.01969 0.02557 -0.49649 0 0.97964 -1.07485

Examples of output: Tracer output (log files)

1qys_score.log

- Shows exactly the command line you are running at the beginning
- Which databases are being used, calling protocols, warnings, errors, etc.
- Very useful for debugging to figure out where problems are coming from
- Makes your protocol reproducible!!

Examples of output: Tracer output (log files)

1qys_score.log

core.init: Rosetta version exported from http://www.rosettacommons.org core.init: command: /dors/meilerlab/apps/rosetta/rosetta 2016.08.58479/main/source/bin/rosetta scripts.default.linuxgccrelease @docking.options -parser:protocol docking core.init: 'RNG device' seed mode, using '/dev/urandom', seed=1059677151 seed offset=0 real seed=1059677151 core.init.random: RandomGenerator:init: Normal mode, seed=1059677151 RG type=mt19937 core.init: Resolved executable path: /dors/meilerlab/apps/rosetta/rosetta 2016.08.58479/main/source/build/src/release/linux/2.6/64/x86/gcc/5.2/default/rosetta scripts.d core.init: Looking for database based on location of executable: /dors/meilerlab/apps/rosetta/rosetta 2016.08.58479/main/database/ protocols.jd2.PDBJobInputter: Instantiate PDBJobInputter protocols.jd2.PDBJobInputter: PDBJobInputter::fill jobs protocols.jd2.PDBJobInputter: pushed 3gbm HA 3gbn Ab.pdb nstruct indices 1 - 50 protocols.evaluation.ChiWellRmsdEvaluatorCreator: Evaluation Creator active ... protocols.jd2.JobDistributor: Parser is present. Input mover will be overwritten with whatever the parser creates. protocols.jd2.PDBJobInputter: PDBJobInputter::pose from job protocols.jd2.PDBJobInputter: filling pose from PDB 3gbm HA 3gbn Ab.pdb core.chemical.ResidueTypeSet: Finished initializing fa standard residue type set. Created 384 residue types core.chemical.ResidueTypeSet: Total time to initialize 0.43 seconds. core.conformation.Conformation: Found disulfide between residues 7 461 . . . protocols.id2.JobDistributor: 3abm HA 3abn Ab full 0050 reported success in 381 seconds protocols.jd2.JobDistributor: no more batches to process... protocols.jd2.JobDistributor: 50 jobs considered, 50 jobs attempted in 16297 seconds

Options to control tracer output *these files can get very long!*:

- Silence certain tracers:
 - -mute core.chemical.ResidueTypeSet
- Change verbosity level (Error/Warning/Info/Debug/Trace) -out:levels all:Warning core.init:Info

Other files: application-specific

- Span File: Defines which residues are in the membrane
- Loops File: Identifies the loop residues for loop closure
- Params File: Custom parameters for small molecules or non-canonical amino acids
- Constraint File: Experimentally derived restraints
- Fragment File: Short protein segments used for comparative modeling and de novo folding
- Res Files: Indicates which residue positions should be designed

Protocols can get complicated...

Toward high-resolution prediction and design of transmembrane helical protein structures

P. Barth, J. Schonbrun*, and D. Baker[†]

Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195

\$ROSETTA/main/source/bin/AbinitioRelax.linuxgccrelease -database ../../rosetta_database -in:file:fasta ./input_files/lelwA.fasta in:file:native ./input_files/lelw.pdb -in:file:frag3 ./input_files/aalelwA03_05.200_v1_3 -in:file:frag9 ./input_files/aalelwA09_05.200_v1_3 -abinitio:relax -relax:fast abinitio::increase_cycles 10 -abinitio::rg_reweight 0.5 abinitio::rsd_wt_helix 0.5 -abinitio::rsd_wt_loop 0.5 -use_filters true -psipred_ss2 ./input_files/lelwA.psipred_ss2 -kill_hairpins out:file:silent lelwA_silent.out -nstruct 10

OR

\$ROSETTA/main/source/bin/AbinitioRelax.linuxgccrelease @options.txt

Use an options file for your runs

Why?

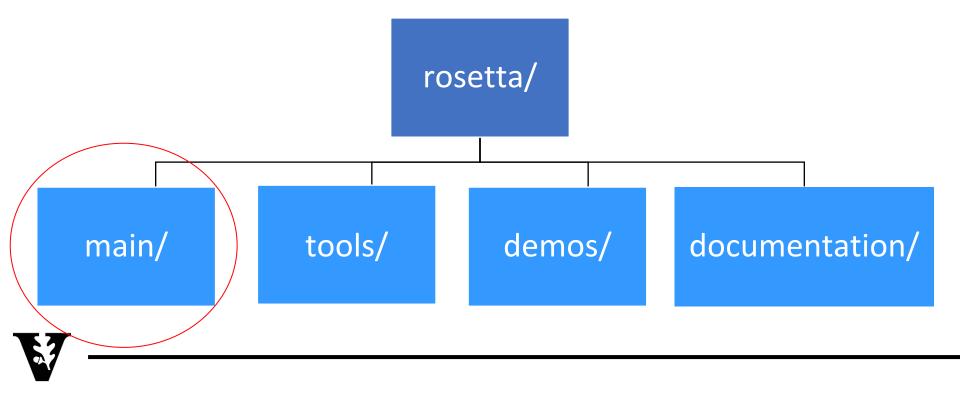
- Easier to read/organize
- Reproducibility!

\$ROSETTA/main/source/bin/AbinitioRelax.linuxgccrelease @options.txt

```
-in:file
    -fasta ./input_files/le1wA.fasta
    -native ./input_files/le1w.pdb
    -frag3 ./input_files/aa1elwA03_05.200_v1_3
    -frag9 ./input_files/aa1elwA09_05.200_v1_3
-psipred_ss2 ./input_files/le1wA.psipred_ss2
-abinitio:relax
-relax:fast
-abinitio::increase_cycles 10
-abinitio::rg_reweight 0.5
...
-out:file:silent ./output_files/le1wA_silent.out
-nstruct 10
```


Any Questions?

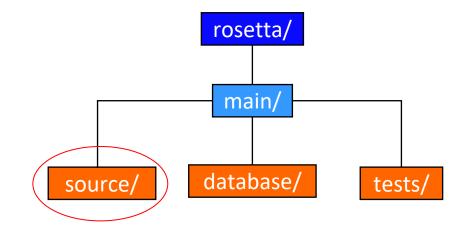
Rosetta Resources for Users:


https://www.rosettacommons.org

- Documentation
- User guides
- Forum
- Software Download
- Tutorials (meilerlab.org)

Basic Rosetta Structure

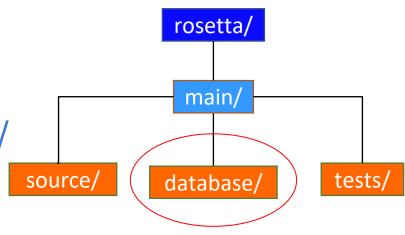
cd ~/rosetta_workshop/rosetta/


~/rosetta_workshop/rosetta/main/

Rosetta/main/source/bin/

- Most applications you will run are
- calling programs within the bin directory
 - rosetta_scripts.default.linuxgccrelease
 - score_jd2.default.linuxgccrelease
 - relax.default.linuxgccrelease

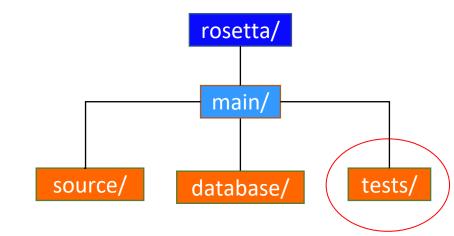
Rosetta/main/source/scons.py


- Used for compiling
- Rosetta/main/source/src/
 - This is where all of the code lives
- Rosetta/main/source/scripts/
 - Some useful scripts live here
 - (e.g. params file generation)

~/rosetta_workshop/rosetta/main/database/

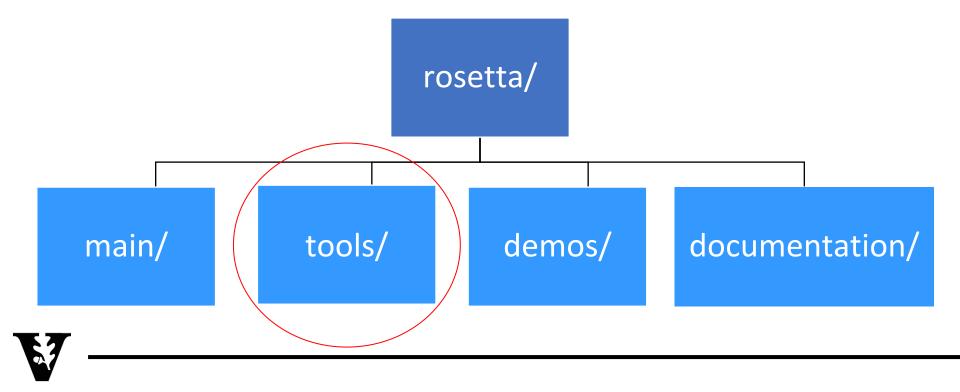
Contains pre-defined information that an application needs — users generally don't change things here. Note: Most of the time, applications know where the database is without having to specify it.

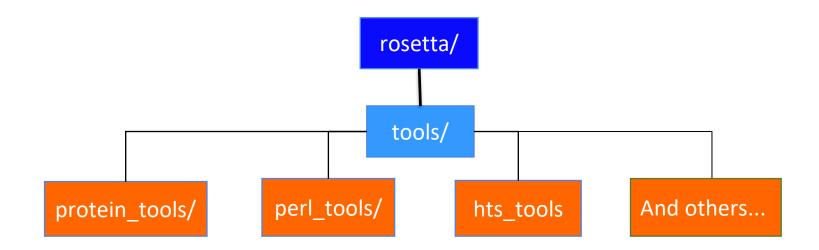
- Rosetta/main/database/scoring/
 - Default weights files
 - Rotamer libraries
- Rosetta/main/database/chemical/
 - Residue information--params files
 - Atom sets



~/rosetta_workshop/rosetta/main/tests/

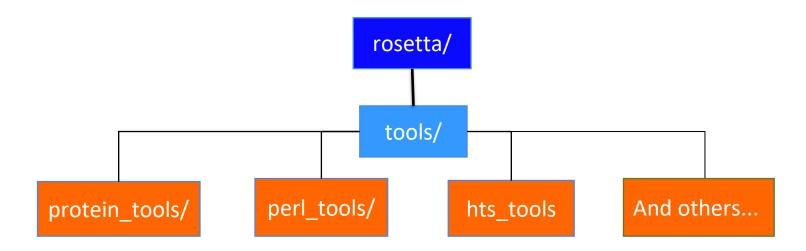
Rosetta/main/tests/


Tests for Rosetta code (useful for developers only)



Basic Rosetta Structure

cd ~/rosetta_workshop/rosetta/


~/rosetta_workshop/rosetta/tools/

- These scripts are incredibly help for smaller, more basic tasks
- Used mainly to setup or analyze runs

~/rosetta_workshop/rosetta/tools/protein_tools/scripts/

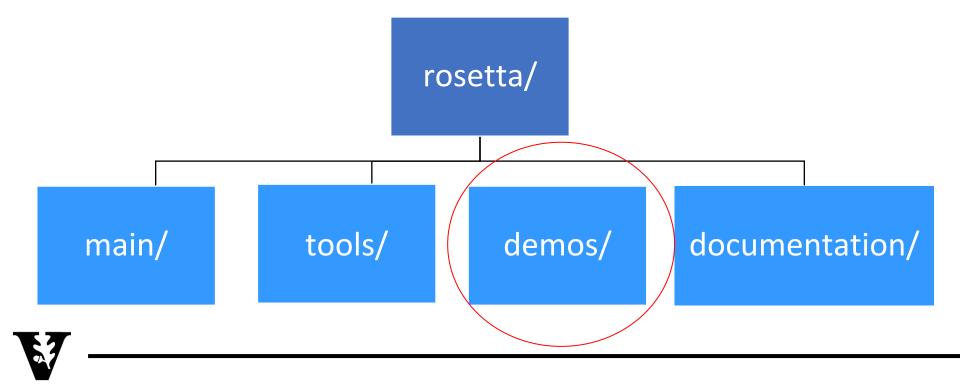
Some useful scripts to be aware of:

clean_pdb.py*

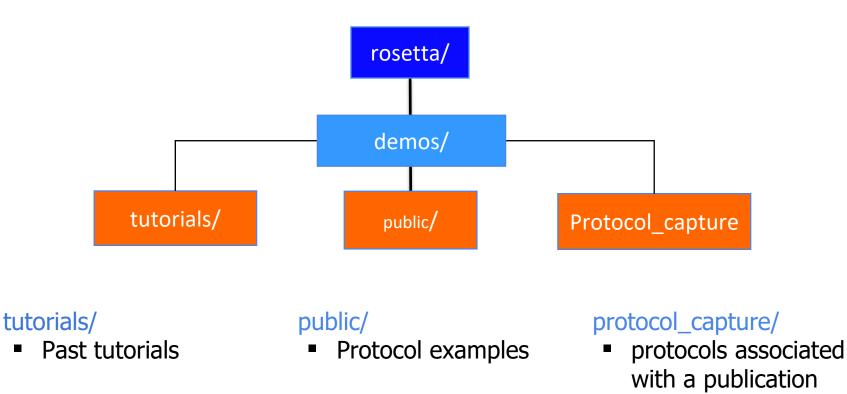
 Makes a PDB "Rosetta-proof" and used at the beginning of almost any protocol

pdb_renumber.py

Renumbering your PDB starting from 1

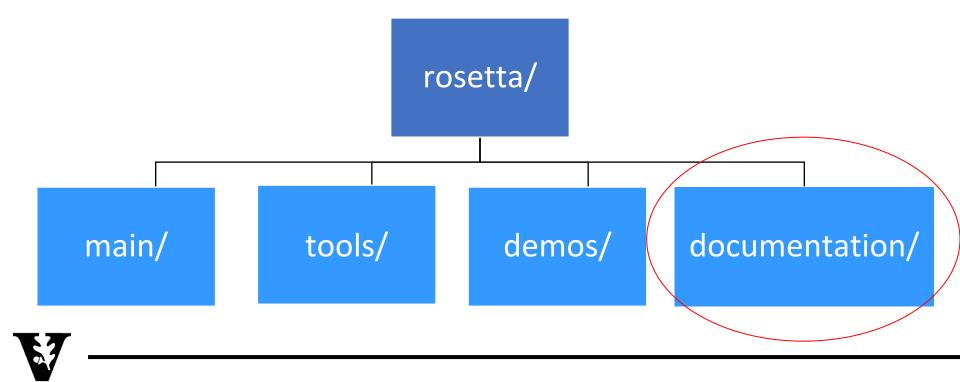

score_vs_rmsd.py

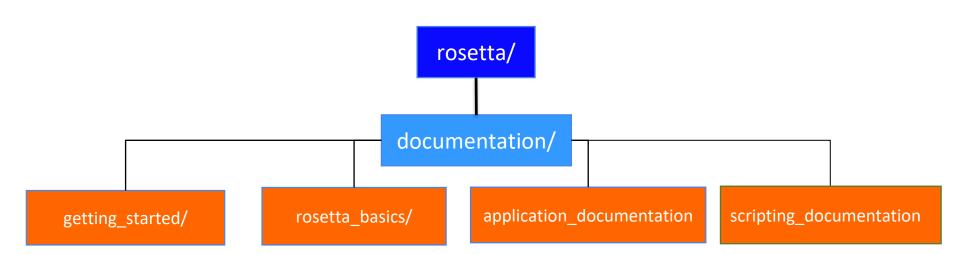
- Setup for score vs. RMSD plots
- top_n_percent.py
 - Extracts tags (protein names) for top given percent of models based on score term



Basic Rosetta Structure

cd ~/rosetta_workshop/rosetta/


~/rosetta_workshop/rosetta/demos


DISCLAIMER: May be out of date, always check Wiki/RosettaCommons/forum for latest information!

Basic Rosetta Structure

cd ~/rosetta_workshop/rosetta/

~/rosetta_workshop/rosetta/documentation/

Very useful to go through when you're just getting started in Rosetta or any structural biology software

Understanding general Rosetta concepts

- Where to find FAQs (How long does this run take?)
- Options list, file types

Protocols you can use

https://www.rosettacommons.org/docs/latest/Home

General structural biology FAQs

How do I do X?

