
Non-canonical amino acid (NCAA) parameterization using Rosetta

When designing peptides, one can find the vocabulary of the twenty canonical amino acids to be restrictive in
designing tight, specific binders to the receptor. Therefore, a framework needs to exist for modeling amino acids
which can have any sidechain chemistry, i.e., non-canonical amino acids (NCAAs). In order to include these NCAAs
into Rosetta design simulations, you must first parameterize them, which involves listing atoms and bonds and
their respective types, recording the initial geometry, assigning rotamers, etc. Thankfully, most of this process can
be handled automatically by the molfile_to_params_polymer.py script, but rotamer assignment still remains a
challenge for which Rosetta proposes multiple solutions. This tutorial will detail how to use each of these tools
in combination with molfile_to_params_polymer.py to go from a molfile (.sdf) of a NCAA to a parameter file
(.params) which is useable in Rosetta design simulations.

1. Using existing canonical parameters for non-canonicals

The simplest way of assigning rotamers to a NCAA is to use a set of rotamers which already exist and simply
attach them to your NCAA. However, this requires that your NCAA be quite similar to an existing canonical AA.
For this step, we will be parameterizing a 3,4,5-trifluorophenylalanine (abbreviated in this tutorial as TFF), which
highly resembles a phenylalanine. First, make a directory for your params files and cd into that directory.

mkdir NCAA_params
cd NCAA_params

The molfile for TFF is located at ../input_files/TFF.sdf. There are a few things to note about this input
which are required for proper parameterization by Rosetta. First of all, you should notice that the backbone is in a
dipeptide form where each end of the amino acid is extended to a methyl group representing the adjacent C-alpha
atoms of neighboring amino acids. This is necessary for Rosetta to understand how to connect this AA to adjacent
AA’s. In the file itself, there is also a set of lines which inform Rosetta which atoms correspond to the various
atoms of the backbone, which atoms connect to the upper and lower AA’s in the sequence, and properties such as
charge, aromaticity, and chirality. Because of these instructions, to parameterize this NCAA, all we have to run is:

python <RosettaDir>/main/source/scripts/python/public/molfile_to_params_polymer.py \
--clobber --polymer --no-pdb --name TFF --use-parent-rotamers PHE \
-i ../input_files/TFF.sdf

Note the usage of --use_parent_rotamers in this command, as this is what establishes which canonical AA
rotamers you want to use. If you look at the generated parameter file with cat TFF.params, you should see a line
which says ROTAMER_AA PHE, indicating phenylalanine’s rotamers are being used for this AA.

2. Rigorous rotamer calculation using MakeRotLib

In 2012, Renfrew et. al. developed MakeRotLib, for generating NCAA rotamers through minimization of iterated
initial conformational states using a hybrid Rosetta/CHARMM energy function. This protocol remains the most
rigorous calculation of NCAA rotamers that exists in Rosetta, but due to its rigor, its runtime is not suitable for
large libraries of NCAAs. In addition, the runtime scales exponentially with the number of chi angles and caps
at 4 chis, so this protocol is also not suitable for highly flexible sidechains. Finally, MakeRotLib is not capable of
handling anything other than monosubstituted alpha amino acids, so if your amino acid structure is exotic, it won’t
be able to be processed by MakeRotLib. To demonstrate the functionality of MakeRotLib, you will parameterize an
amino acid with a methyl ether group as a sidechain (abbreviated as EAA in this tutorial). Similar to the previous
case, EAA.sdf is in dipeptide form and has the necessary instructions for Rosetta to parameterize the molecule.
Run molfile_to_params_polymer.py to get the parameter file:

python <RosettaDir>/main/source/scripts/python/public/molfile_to_params_polymer.py \
--clobber --polymer --no-pdb --name EAA -i ../input_files/EAA.sdf

1

https://doi.org/10.1371%2Fjournal.pone.0032637

However, since we excluded --use_parent_rotamers, this parameter file is not ready for use in Rosetta
yet. In order to run MakeRotLib and generate the rotamers, you will need an options file, supplied at
../input_files/EAA_makerotlib_options.in. This file specifies the angle ranges over which MakeRotLib
should iterate, the number of chi angles in the sidechain, and initial guesses as to how many chi angle bins there
are and where they lie. For this tutorial, the options file will consider all possible phi and psi angle values at
increments of 10 degrees, every value of the single chi angle at 30 degree increments, and assume there are 3 chi
rotamer bins each spaced 120 degrees apart (which is reasonable since the canonicals generally show this pattern
as well). Now to run MakeRotLib:

<RosettaDir>/main/source/bin/MakeRotLib.default.linuxgccrelease \
-extra_res_fa ./EAA.params -options_file ../input_files/EAA_makerotlib_options.in

This calculation should take a few minutes, after which you should have a ton of EAA_* files in your current
directory. This directory contains logs from running MakeRotLib as well as a .rotlib file for each pair of phi/psi
angle values. The final objective is to consolidate all of these files into a single .rotlib, and add a reference to
this rotlib into the parameter file:

for i in `seq -170 10 180`; do
for j in `seq -170 10 180`; do

cat EAA_180_${i}_${j}_180.rotlib >> EAA.rotlib
done

done
echo "NCAA_ROTLIB_PATH $PWD/EAA.rotlib" >> EAA.params
echo "NCAA_ROTLIB_NUM_ROTAMER_BINS 1 3" >> EAA.params
rm -rf EAA_*

Now that the file EAA.params has been assigned rotamers, it is now ready to use in Rosetta. Note that the
NCAA_ROTLIB_PATH is hardcoded, so if you use the example .params file in output_files, you will need to change
this path to match your environment.

3. Small molecule conformers as NCAA rotamer libraries (FakeRotLib)

While MakeRotLib is the most accurate method for rotamer construction in Rosetta, it does not apply in many
contexts, as was previously discussed. To address some of these shortcomings, we consider the NCAA as a small
molecule and define the rotamers of the NCAA as low energy conformers of the “small molecule”. The implemen-
tation of this idea is the fake_rotlib.py script, which uses RDKit to generate conformations of the NCAA, score
the conformations using the UFF forcefield, and utilize the N lowest energy conformations in the parameter file as
“PDB rotamers”. The distinction between this implementation of the rotamer library and the previous methods
is that the previous methods define the distribution of rotamers and then score a given conformation according
to its position in that distribution, whereas PDB rotamers store a set of acceptable conformations and randomly
draws from these conformations when modeling the residue. Since PDB rotamers don’t have to fit into the distri-
bution parameters accepted by Rosetta, pretty much any NCAA can be accommodated by PDB rotamers. On the
other hand, PDB rotamers inherently discretize the conformational space, are not compatible with some movers,
and generally require more compute time and memory in modeling. To allow both types of rotamer libraries to
be built, fake_rotlib.py also has functionality to generate a rotamer distribution file (.rotlib) from the PDB
rotamers (as long as the NCAA has four or less chi angles). In addition to rotamer modeling, fake_rotlib.py
automates a few other steps of the process, including dipeptide capping, writing the params instructions, and
running molfile_to_params_polymer.py.

As a demonstration of fake_rotlib.py, we parameterize another phenylalanine derivative (with an attached Bis(2-
chloroethyl)amine group), abbreviated as MFF in this tutorial. Since this molecule has far more chi angles than
any other we’ve parameterized before, we will be using PDB rotamers in lieu of a .rotlib file. fake_rotlib.py
depends on RDKit to generate conformers, so we need a python with it installed. We also need to move the
fake_rotlib.py script into the Rosetta source:

2

cp ../scripts/fake_rotlib.py <RosettaDir>/main/source/scripts/python/public/

With a python interpreter with RDKit active, simply run:

python <RosettaDir>/main/source/scripts/python/public/fake_rotlib.py \
--input '../input_files/MFF.sdf' --dip -n 100

mv ../input_files/MFF* ./

Note that the --dip flag is used here because the input MFF.sdf is already in dipeptide form and has parameteri-
zation instructions pre-generated. If instructions need to be generated, run without this flag and ensure that the
input is NOT in dipeptide form (either neutral or zwitterionic backbone is acceptable). This causes two important
files to be generated: the MFF.params which possesses a reference to the PDB rotamers file MFF_rotamer.pdb.
MFF_rotamer.sdf is also here, but this is an intermediate file used input to molfile_to_params_polymer.py.
Regardless, as long as MFF_rotamer.pdb remains in the same directory as MFF.params, the file is ready to be used
in Rosetta simulations.

3

Macrocyclic peptide design in Rosetta

This tutorial will guide you through the basics of macrocyclic peptide design based on the protocol published in
Mulligan et. al. Computationally designed peptide macrocycle inhibitors of New Delhi metallo-beta-lactamase 1.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):e2012800118. doi: 10.1073/pnas.2012800118. PMID: 33723038;
PMCID: PMC8000195.

1. Background

Peptides are interesting molecules because they lie in size between small molecules and have properties of both
including high-affinity and incorporation of non-canonical amino acids. Peptides are attractive as protein-protein
interaction and enzyme catalysis inhibitors. Mulligan et. al developed a protocol that designs peptide macrocycle
inhibitors of New Delhi metallo-beta-lactamase 1, an enzyme that degrades beta-lactam antibiotics. They start
from the structure of L-captopril, a small molecule with weak inhibition of New Delhi metallo-beta-lactamase 1
and develop a macrocycle with 50 times greater potency.

The PDB structure of L-captopril bound to New Delhi metallo-beta-lactamase 1 is 4EXS. L-captopril looks a a
D-cysteine, L-proline dipeptide and is easily convered into a D-cysteine L-proline dipeptide stub. This stub will
serve as the anchor for peptide extension.

Note that example output files for the macrocyle protocol and be found in the macrocycle/demo directory.

2. Anchor Extension

If you are not already in the macrocycle directory, cd to macrocycle - assuming you are in peptide_ncaa_macrocycle_design:

cd macrocycle

The prepared inputs for extension can be found in extend/inputs and include the dipeptide stub, the Rosetta
flags, and a manual foldtree.

Anchor extension requires generation of a foldtree, so that pertubation of anchor stub torsion angles will not disrupt
the desired anchor interaction geometry. This can be found in inputs/foldtree1.txt. (See Appendix for link on
foldtrees.)

From the macrocycle directory:

cd extend/inputs

Open the dipeptide stub 4EXS_Dcys_Lpro.pdb in pymol:

pymol 4EXS_Dcys_Lpro.pdb

Find the dipeptide stub that binds to the Zn catalytic site and will serve as the anchor.

Now that you understand where the dipeptide stub binds, we will extend the stub to form an 8 residues macrocyclic
peptide. The rosetta scripts xml found in extend/xml/NDM1i_1_design.xml uses the PeptideStubMover to extend
the stub and sets the torsion values of the dipeptide stub backbone to chemically senible values. Additionally, the
xml add peptide cutpoints to N and C terminus and declares a bond between the termini so that Rosetta no longer
has repulsive terms for the termini.

Now, move to the extend directory:

cd ../

Make the output directory. Visualize and run the command to extend the peptide stub (should take less than a
minute to run):

mkdir output

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \
-in:file:s inputs/4EXS_Dcys_Lpro.pdb -parser:protocol xml/NDM1i_1_design.xml \
@inputs/rosetta.flags -out:prefix output/ -nstruct 5

This command creates five extended peptides that can be found in the output directory. Visualize these structures
in pymol:

pymol output/*.pdb

Notice that the geometry of the N to C terminal bond is incorect because have not yet closed the bond with loop
closure (genkic), only declared that it exists.

3. Cyclization

In Rosetta, Generalized Kinematic Closure (GenKIC) is used to close/model loops and can go through covalent
linkages such as disulfide bonds of N to C terminal cyclization. We will use genkic to close the terminal peptide bond,
setting the angles and bond distances of this bond to the ideal value. Additionally, genkic is used to sample different
backbone geometries of cyclic peptides that can be designed. The XML in cyclize/xml/NDM1i_1_design.xml
closes the terminal peptide bond and filters for peptide internal hydrogen bonds - important for designing stable
peptides that lack a hydrophobic core - and steric clashes with the receptor. This step is computationally expensive
due to the high filter failure rate, so you should open a new terminal tab to run these commands and look at the
results later.

From the macrocycle directory in a new tab (should take about 2 minutes for 5 backbones - all may not be sucessful):

cd ../cyclize
mkdir output

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \
-in:file:s inputs/4EXS_Dcys_Lpro.pdb -parser:protocol xml/NDM1i_1_design.xml \
@inputs/rosetta.flags -out:prefix output/ -nstruct 5

Once the backbone cyclization completes, you can use these backbones as the starting point for design, but note
that some designs are expected to fail filters. In an actual peptide search, you would generate thousands of designed
peptide from different backbones. For now, move onto designing a given backbone in the design directory.

3. Design

The design protocol for cyclic peptides uses a combination of repacking a minimization to design a given backbone
and filters for oversaturated hydrogen bond acceptors - the Rosetta energy function is pairwise and cannot detect
oversaturated hydrogen bond acceptors - as well as shape complementarity and internal hydrogen bonds. The
packer pallette for design includes the L amino acids and their D sterioisomers, but exludes GLY and CYS residues
to aid with conformational stability of the design.

Additionally, we can include non-canonical amino acids, such as TFF from Part 1 of the tutorial in the design
pallete.

Note that this protocol uses amino acid composition constraints to enforce among other things incorporation of
hydrophobic and proline amino acids.

Edit the XML script to add TFF to the set of residues being designed:

cd ../design
gedit xml/NDM1i_1_design.xml

While editing the XML script, add TFF to the packer line, the line for L hydrophobic design (only needed because
of the amino acid composition used - see Appendix), and write the change. Lines similar to the following should
already exist in the XML – find them and edit in the changes

Under PACKER_PALETTES:

<CustomBaseTypePackerPalette name="design_palette"
additional_residue_types="DALA,DASP,DGLU,DPHE,DHIS,DILE,DLYS,DLEU,DMET,DASN,

DPRO,DGLN,DARG,DSER,DTHR,DVAL,DTRP,DTYR,TFF"
/>

Under TASK_OPERATIONS:

<RestrictToSpecifiedBaseResidueTypes name="L_hydrophobic_design"
base_types="PHE,ILE,LEU,MET,PRO,VAL,TRP,TYR,TFF"
selector="select_L_hydrophobic_positions"

/>

We will be designing with provided backbones that can be found in inputs/4EXS_Dcys_Lpro_native.pdb and
../cyclize/output/*.pdb. The PDB in inputs is the backone of one of the crystalized macrocycle inhibitors and
the demo backbones are provided to ensure higher probability of sucessful design and incorporation of TFF.

To design with the given backbone (Will take about 20 minutes, but you can start the visualization as they are
made approximatly every 2 minutes):

mkdir output

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \
-in:file:s inputs/4EXS_Dcys_Lpro_native.pdb ../demo/cyclize/output/*.pdb \
-in:file:extra_res_fa ../../ncaa/output_files/TFF.params \
-parser:protocol xml/NDM1i_1_design.xml \
@inputs/rosetta.flags -out:prefix output/ -nstruct 1

Visualize these structures in pymol:

pymol output/*.pdb

Optional Monte Carlo Pertubation of Initial Designed Peptides

Mulligan et. al. used a monte carlo protocol to explore the local conformational space of initial designed peptides,
optimizing the peptide - enzyme shape complementarity. The xml for this step is more complicated and the
procedure is computationally expensive, so this section is optional to run and would require a deeper dive to fully
understand.

To run the monte carlo protocol:

cd ../mc_sample
mkdir output

~/rosetta_workshop/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease \
-in:file:s inputs/4EXS_Dcys_Lpro_native_0001.pdb -parser:protocol xml/NDM1i_1_design.xml \
@inputs/rosetta.flags -out:prefix output/ -nstruct 5

Full Protocol

The full protocol, combining all steps into one xml can be found in the og_scripts directory

Appendix

For the original github for these scripts: https://github.com/vmullig/ndm1_design_scripts

For more details on foldtrees, go here: https://www.rosettacommons.org/demos/latest/tutorials/fold_tree/fold_
tree

Other helpful movers for modeling peptides in Rosetta:

CycpepRigidBodyPermutationMover https://www.rosettacommons.org/docs/latest/scripting_documentation/
RosettaScripts/Movers/movers_pages/CycpepRigidBodyPermutationMover

Simple Cyclic Peptide Prediction (simple_cycpep_predict) Application https://www.rosettacommons.org/docs/
latest/structure_prediction/simple_cycpep_predict

PeptideCyclizeMover https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/
Movers/movers_pages/PeptideCyclizeMover

Amino Acid Composition:

• https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_
pages/AddCompositionConstraintMover

• https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/AACompositionEnergy

https://github.com/vmullig/ndm1_design_scripts
https://www.rosettacommons.org/demos/latest/tutorials/fold_tree/fold_tree
https://www.rosettacommons.org/demos/latest/tutorials/fold_tree/fold_tree
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/CycpepRigidBodyPermutationMover
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/CycpepRigidBodyPermutationMover
https://www.rosettacommons.org/docs/latest/structure_prediction/simple_cycpep_predict
https://www.rosettacommons.org/docs/latest/structure_prediction/simple_cycpep_predict
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/PeptideCyclizeMover
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/PeptideCyclizeMover
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/AddCompositionConstraintMover
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/AddCompositionConstraintMover
https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/AACompositionEnergy

