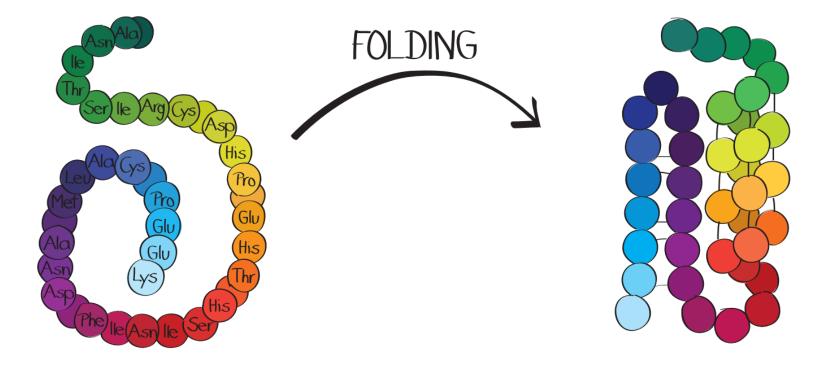
Machine Learning in Rosetta

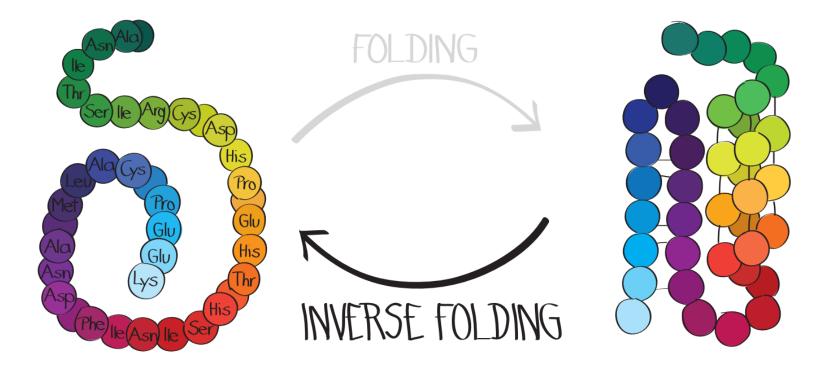
Presented by: Gustavo Araiza Adapted from: Cristina Elisa Martina Rosetta Workshop 2025 Meiler Lab

Revolution in Structural Biology:



(Art from Ruth Kellner)

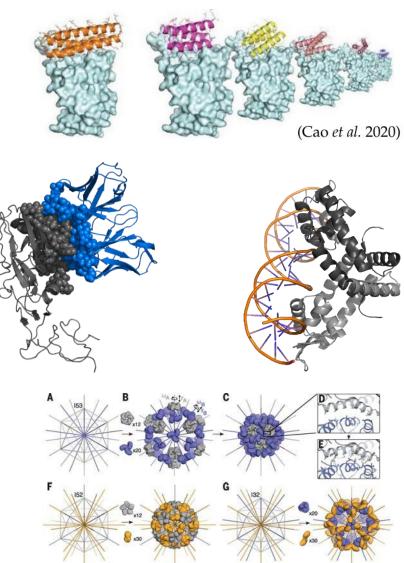
Protein design with ML:



(Art from Ruth Kellner)

What is the best sequence to:

- fold into this protein scaffold?
 - new functions
 - new shapes (de novo design)
- increase protein stability?
 - half-life
 - thermostability
 - crystallizability
 - protein yields
- increase binding to X?
 - protein-protein
 - ligand-protein
 - supramolecular assemblies
- increase enzymatic activity?
 - activity
 - specificity



Computational tools for protein design:

Structure-based methods (*e.g.* Rosetta):

- Starting structure (experimental or model)
- Sampling component
- Scoring component

Machine Learning methods (*e.g.* ProteinMPNN):

- Large dataset for training
- Starting sequences, structures or both
- Very fast
- More accurate

General info on ML:

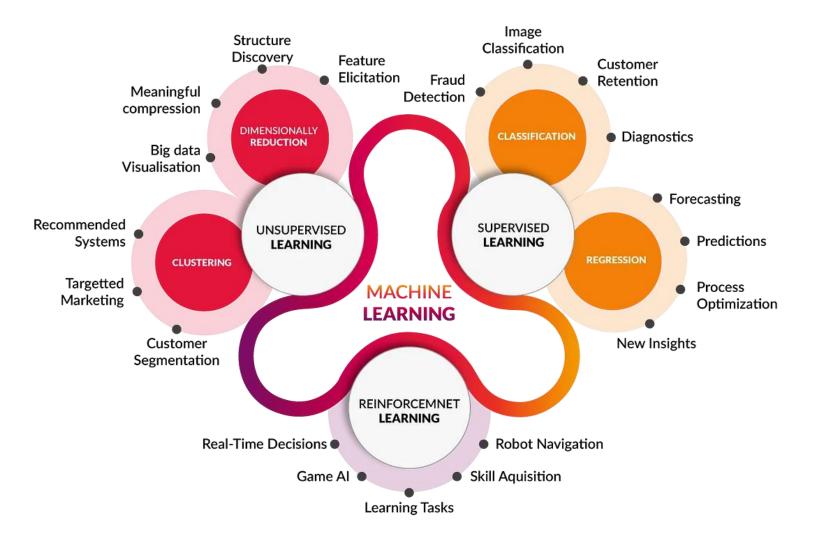


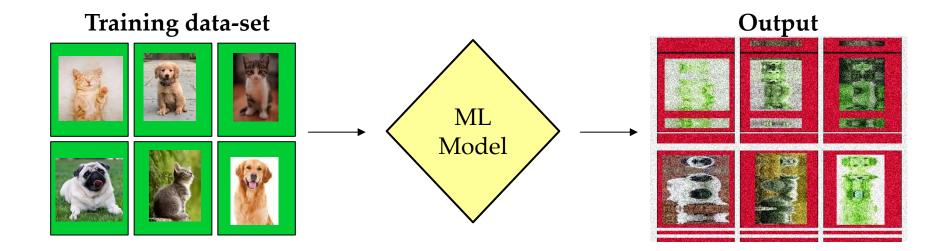
Image source: http://www.cognub.com/index.php/cognitive-platform/

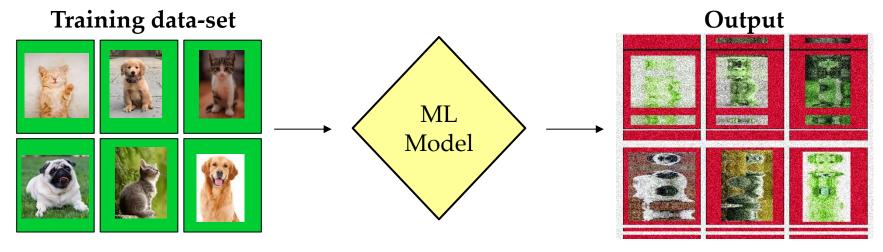
Training/validation data-set

Testing data-set

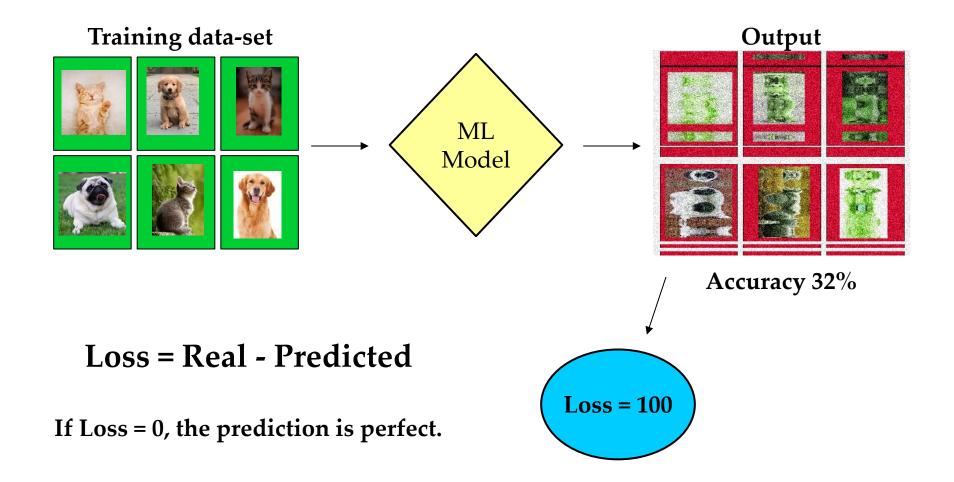
The data-set is divided into three groups:

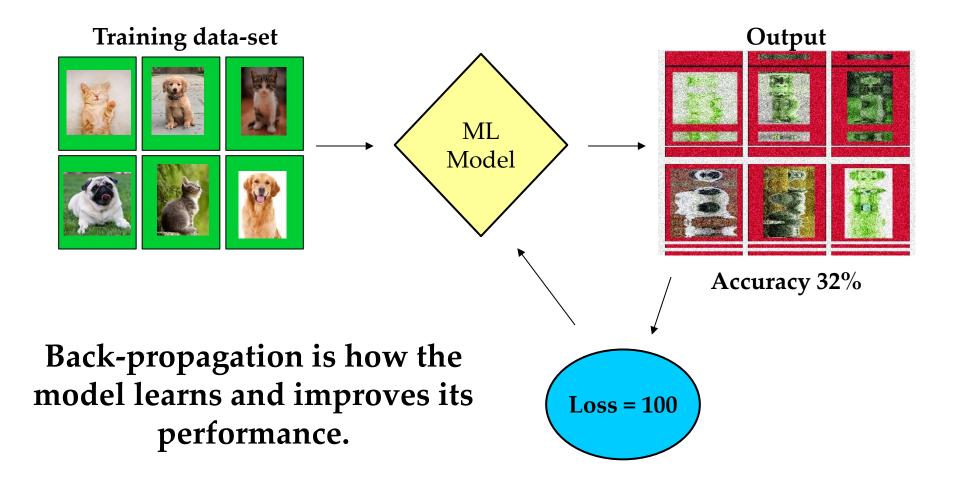
- Training data-set (80%)
 - Trains the model (learning)
- Validation (10%)
 - Used to benchmark *during* learning
 - Enables 'fine-tuning'
 - Testing data-set (10%)
 - used to evaluate the performances with unseen data *after* learning

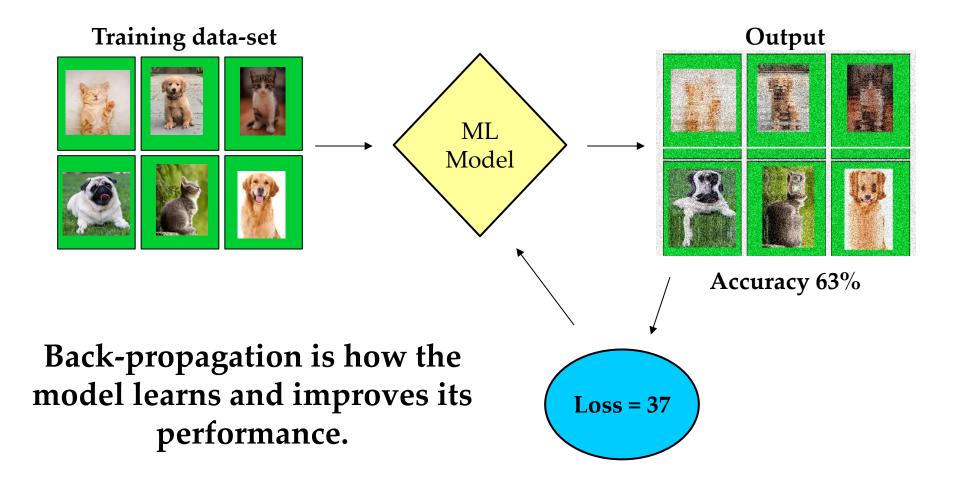


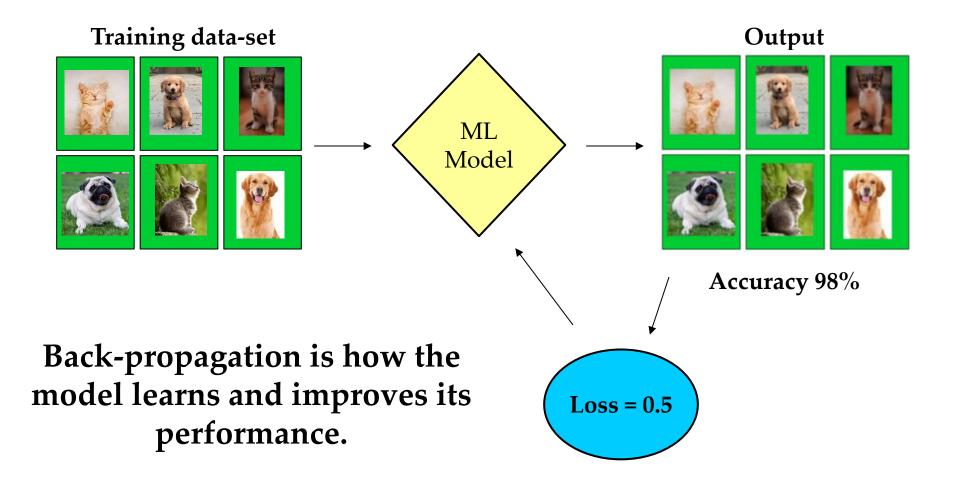


Accuracy 32%











Today's ML methods:

ProteinMPNN – Structure only

• Dauparas, J. et al. Robust deep learning based protein sequence design using ProteinMPNN. 2022.06.03.494563 Preprint at https://doi.org/10.1101/2022.06.03.494563 (2022).

MIF-ST – Structure and sequence

• Yang, K. K., Zanichelli, N. & Yeh, H. Masked inverse folding with sequence transfer for protein representation learning. Protein Engineering, Design and Selection 36, gzad015 (2022).

ESM – Sequence only

- Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences 118, e2016239118 (2021).
- Rao, R. M. et al. MSA Transformer. in Proceedings of the 38th International Conference on Machine Learning 8844–8856 (PMLR, 2021).
- Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

ProteinMPNN (Message Passing Neural Network):

Trained on protein structures from RCSB-PDB:

- 19,700 single-chain protein structures

- Further trained on clustered high-res multichain structures

Predict probabilities of each natural aa for each position

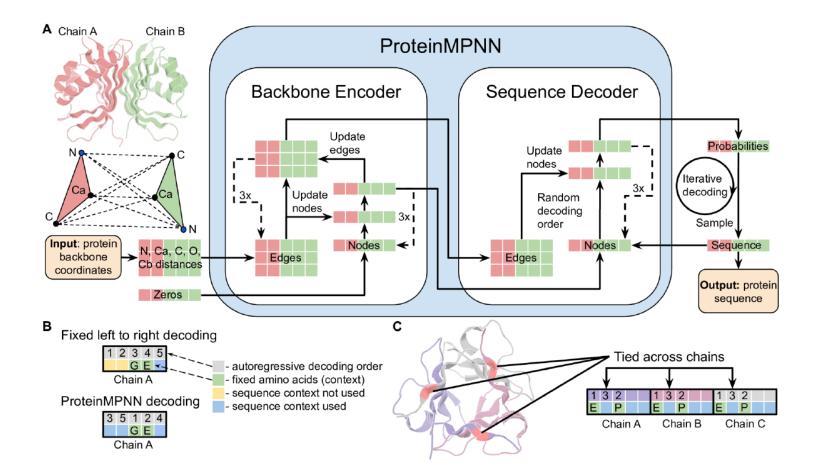
Use probabilities to design sequences

Tested in silico:

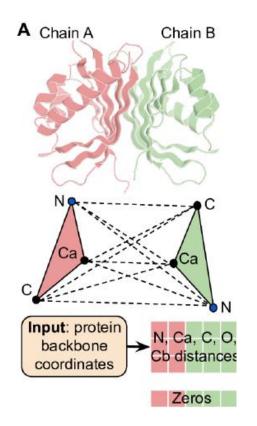
- 690 monomers
- 732 homomers
- 98 heteromers

Tested experimentally

ProteinMPNN:



ProteinMPNN, inputs:



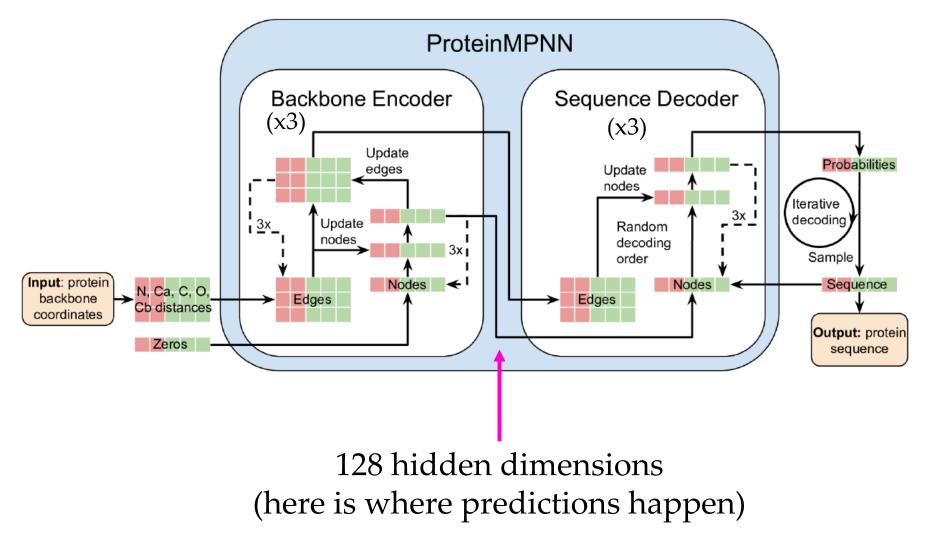
RCSB-PDB database

No evolutionary information!

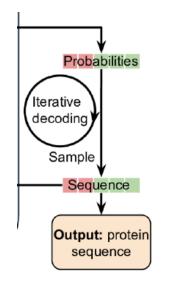
Distances between N, C α , C, O and virtual C β are encoded using graph theory:

- Nodes (atoms)
- Edges (distances)

ProteinMPNN, the MPNN:



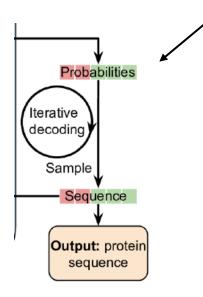
ProteinMPNN, the outputs:



ProteinMPNN outputs re-designed sequences, not structures!

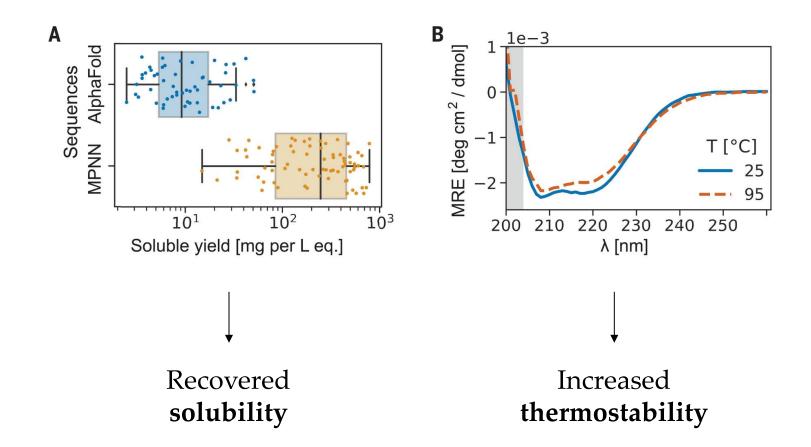
This means that you have predict a designed structure with an alternative method (AF, Rosetta)

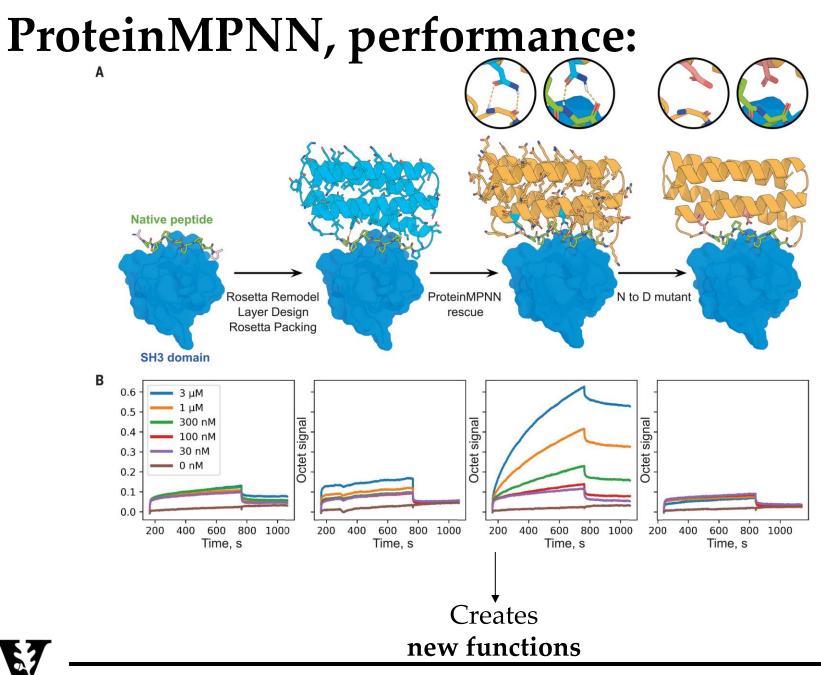
ProteinMPNN, the outputs:



ProteinMPNN in Rosetta takes the probabilities as outputs, and uses it for designing the structure directly!

ProteinMPNN, performance:





MIF-ST (Masked Inverse Folding with Sequence Transfer):

Pre-trained on both protein structures and sequences:

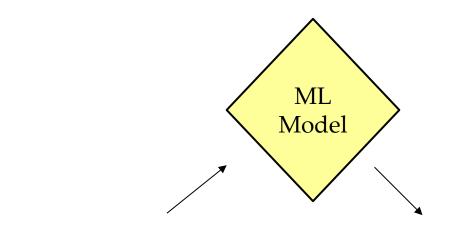
- 19700 protein structures from RCSB-PDB

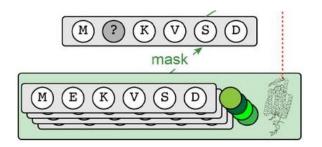
- 42 M sequences from UniRef50
- sequences are partially masked
- model must predict masked residues

Training for downstream task

- trained on single mutants and predicts multiple mutants
- predict experimental measurements
- Tested *in silico* on small and large data-sets:
 - Deep mutational scans
 - Enzymatic activity
 - Stability
 - Binding

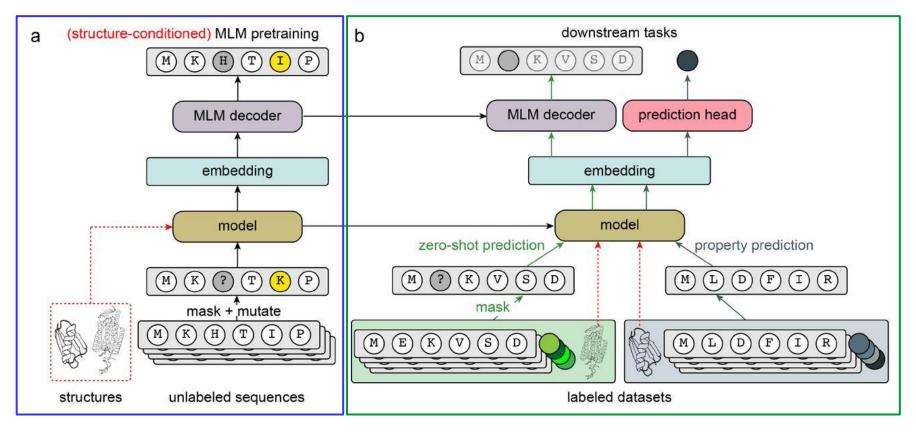
Masking protein sequences in ML:





Prediction: MEKVSD

MIF-ST:



Pre-training (structures, sequences, masking)

Training (sequences, masking)

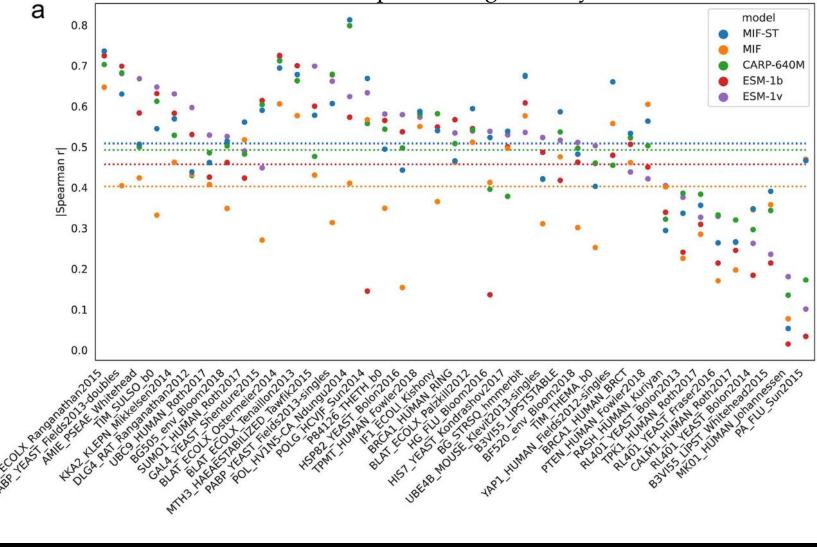
MIF-ST, performance:

Regime	Model	Parameters	Perplexity	Recovery
Sequence only	CARP-640M	640M	7.06	40.5%
Sequence & structure	MIF-4	3.4M	4.95	49.9%
	MIF-8	6.8M	5.00	46.7%
	GVPMIF	3.5M	4.68	51.2%
+Sequence transfer	MIF-ST	3.4M	4.08	55.6%
-UniRef50 pretraining	MIF-ST	3.4M	5.70	45.4%

Perplexity: Model's uncertainty in prediction (lower is better) Sequence Recovery: How well the model recovers native sequences. (higher is better)

MIF-ST, performance:

Predictions on DMS datasets:



ESM (Evolutionary Scale Modeling):

Trained on protein sequences:

- 250 M sequences from UniParc
- Also uses masking techniques

Evaluated on sequences from UniRef:

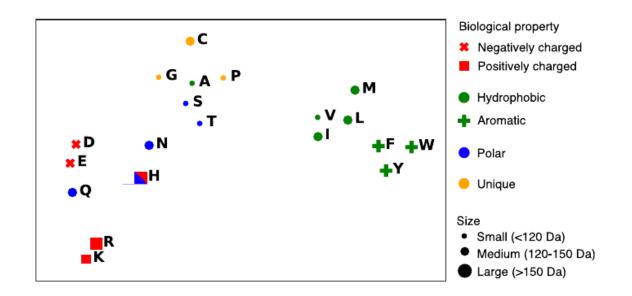
- Low-diversity data-set with UniRef100
- High-diversity sparse data-set with UniRef50 representative
- High-diversity dense data-set with UniRef50 clusters

Tested in silico to predict:

- Physio-chemical residue properties
- Biological variation
- Protein homology
- Secondary and <u>tertiary structure</u> (Lin et al., 2023)
- Effects of mutations

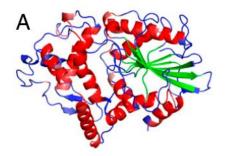
Experimental validation (de novo design - BioRvix) (Verkuil et al., 2022)

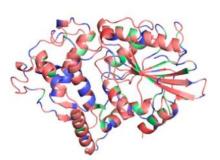
ESM, performance:



Cluster amino acids by properties

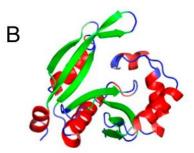
ESM, performance:





With pre-training 8-class Acc: 70.6% No pre-training 8-Class Acc: 36.6%

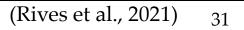
d1nt4a_(Phosphoglycerate mutase-like fold)



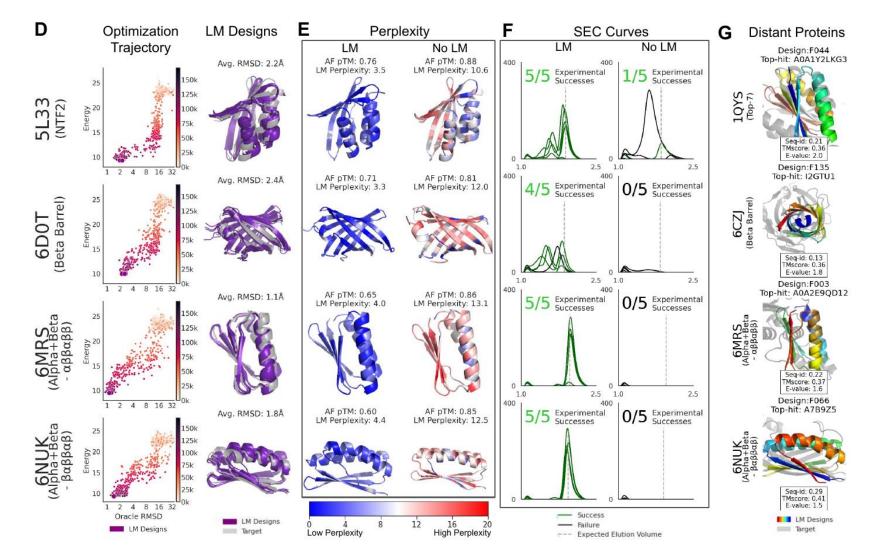
With pre-training 8-class Acc: 82.4%

No pre-training 8-class Acc: 32.4% Predict secondary structures

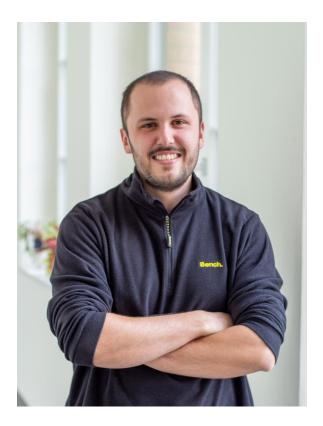
Helices Strands Loops



ESM, performance:



ML in Rosetta:



The hero here:

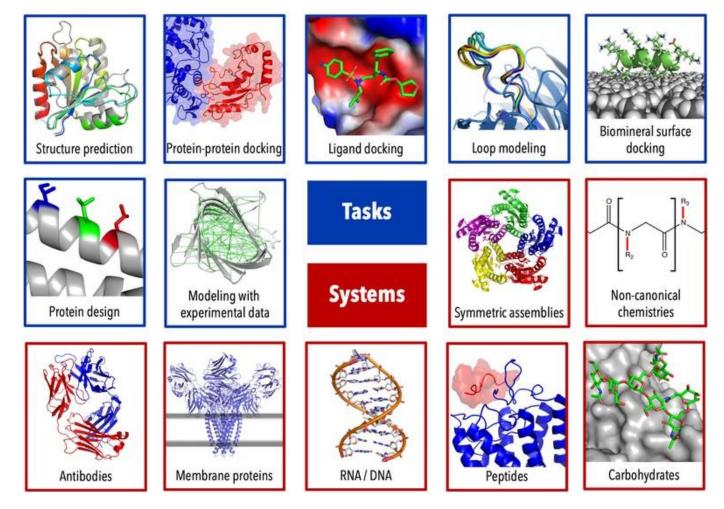
Moritz Ertelt, Ph. D.

Meiler lab alumn from Leipzig University

Contact: moritz.ertelt@uni-leipzig.de

ML in Rosetta:

Why integrating protein ML methods in Rosetta?

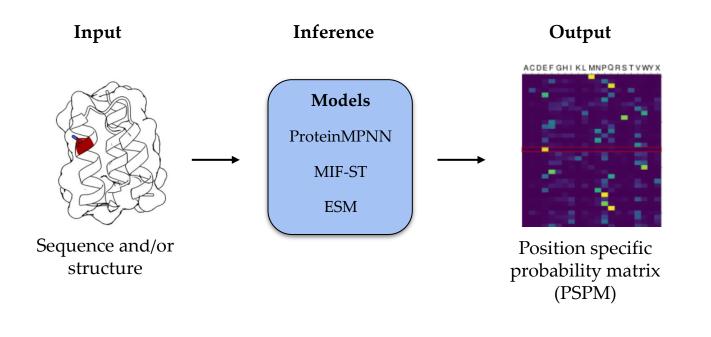


ML in Rosetta:

Why integrate ML design methods in Rosetta?

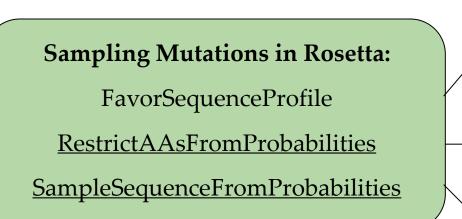
- + Feature calculation is fast in C++
- + No knowledge of Python needed for RosettaScripts
- + Makes it easy to combine ML with Rosetta elements
- + No need to reinvent the wheel for sampling, scoring, etc.
- + Provides an established testing framework

ML in Rosetta Design:



Referred in the tutorial as "Probabilities"

ML in Rosetta Design, design tools:



Constrain the sampling with info from the probabilities.

Restrict sampling to aa at least as likely as the current one from probabilities.

Sample aa from probabilities.

ML in Rosetta Design, design tools:

- Sample 10 positions

(max_mutations="10")

- Sample aa with p>0.1

(prob_cutoff="0.1")

- At least as likely as the current aa

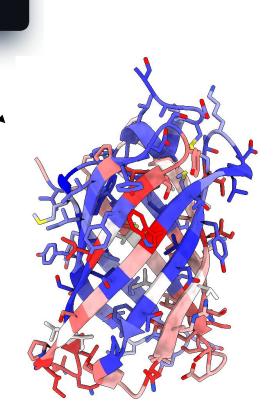
(delta_prob_cutoff="0.0")

ML in Rosetta Design, analysis tools:

1 <SIMPLE_METRICS>

- 2 <ProteinMPNNProbabilitiesMetric name="prediction"/>
- 3 <CurrentProbabilityMetric name="current" metric="prediction"/>
- 4 </ SIMPLE_METRICS>

The probabilities for the sequence are saved in the b-factor column of the pdb and can be easily visualized with pymol/chimera.



ML in Rosetta Design, analysis tools:

Returns the probabilities for the sequence in the pose. Analysis in Rosetta: Average probabilities (i.e. from ProteinMPNN <u>CurrentProbabilityMetric</u> and ESM). <u>AverageProbabilitiesMetric</u> **ProbabilityConservationMetric** Calculate conservation for each position from <u>BestMutationsFromProbabilitiesMetric</u> probabilities. Ranges from 0 (no conservation) to 1

(fully conserved).

Return the most likely mutation(s) for a given position.

The tutorial:

Monomer

Dimer

Input Preparation:

- Download the pdbs
- Clean the pdbs
- Repack the structure

Calculate probabilities:

- ProteinMPNN, MIF-ST, ESM (independently)
- Get current probability
- Get best mutations

Design:

- Use probabilities to guide design
- Use probabilities to guide scoring
- Design interfaces

Bibliography - ML in Rosetta:

- Yang, K. K., Zanichelli, N. & Yeh, H. Masked inverse folding with sequence transfer for protein representation learning. Protein Engineering, Design and Selection 36, gzad015 (2023).
- Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
- Hie, B. L. et al. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol 1–9 (2023)
- Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. (2023).
- Verkuil, R. et al. Language models generalize beyond natural proteins. 2022.12.21.521521 (2022).
- Dauparas, J. et al. Robust deep learning based protein sequence design using ProteinMPNN. 2022.06.03.494563 (2022).
- Rives, A. et al. **Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.** Proceedings of the National Academy of Sciences 118, e2016239118 (2021).
- Rao, R. M. et al. **MSA Transformer.** in Proceedings of the 38th International Conference on Machine Learning 8844–8856 (PMLR, 2021).
- Jumper, J. et al. **Highly accurate protein structure prediction with AlphaFold.** Nature 1–11 (2021) doi:10.1038/s41586-021-03819-2.
- Sculley, D. et al. Machine Learning: The High-Interest Credit Card of Technical Debt.

