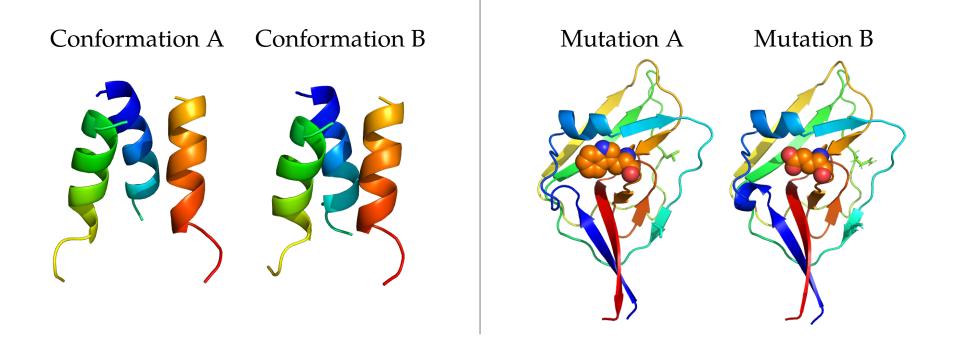
Rosetta Scoring Function

Cristina Elisa Martina Rosetta Workshop Meiler Lab



Why we need a scoring function?

Example 1: Same amino acid sequence, different conformations. Which one is the more stable?

Example 2:

Different single point mutations (or multiple mutations). Which residue is the best one?

A scoring function is able to distinguish and rank different models.

How discriminate among A and B?

Scoring Function (or Energy Function)

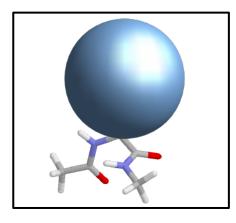
 $\Delta E_{\text{total}} = \sum_{i} w_i E_i(\Theta_i, aa_i)$

The total energy (ΔE_{total}) is the sum of weighted energy terms $(\Sigma_i w_i E_i)$ that are calculated as functions of geometric degrees of freedom (Θ_i) and chemical identities (aa_i) .

Scoring Functions in Rosetta:

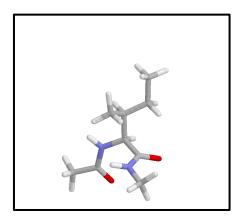
	Score12	Talaris13	Talaris14	REF2015	
2004	20)13	201	.7	-

Historically the total energy was given in Rosetta Energy Units, **REU**


The newest scoring function (REF2015) can be converted to kcal/mol

Rosetta updates its scoring functions to improve the accuracy of the scoring.

Types of Scoring Functions:


Low Resolution

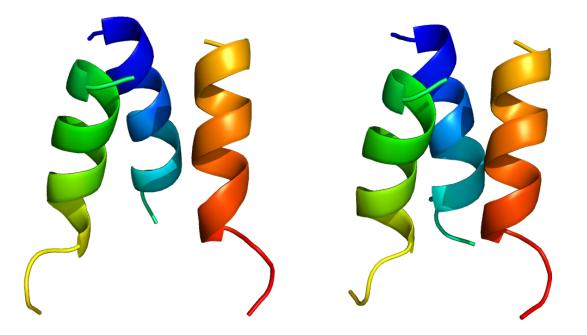
Centroid-mode or Coarse-Grain Simple energy function Faster

Global search of conformational space (Ab-initio folding, loop modeling)

High Resolution

Full-Atom or All-Atom More accurate energy function Time consuming

Local search of conformational space



Rosetta has multiple types of scoring function, depending on the needs.

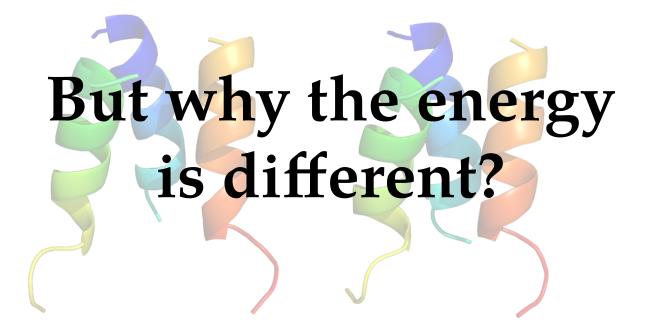
Rosetta Scoring: The lower the better!

Conformation A

Conformation B

Total Energy = 253 REU

Total Energy = -82 REU



Conformation B is the more stable because it has the lower energy (-82 REU).

Rosetta Scoring: The lower the better!

Conformation A

Conformation B

Total Energy = 253 REU Total Energy = -82 REU

Energy Terms

$$\Delta E_{\text{total}} = \mathbf{w}_{1}E_{1} + \mathbf{w}_{2}E_{2} + \mathbf{w}_{3}E_{3} + \mathbf{w}_{4}E_{4} + \dots + \mathbf{w}_{n}E_{n}$$

$$\underbrace{\int_{E_{n,sel} = \sum_{i,j} w_{i,j}^{\text{conn}}[g_{\text{dessb}}(i,j) + g_{\text{dessb}}(j,i)]}_{[E_{n,sel} = \sum_{i,j} w_{i,j}^{\text{conn}}[g_{\text{dessb}}(i,j) + g_{\text{dessb}}(j,i)]}$$

$$\underbrace{\int_{i,j} w_{i,j}^{\text{conn}} \left[\frac{m_{i,j}d_{i,j}}{b_{i,j}} + b_{i,j} & d_{i,j} \le 0.6\sigma_{i,j} \\ 0 & \sigma_{i,j} \le d_{i,j} \le \sigma_{i,j} \\ 0 & \sigma_{i,j} \le d_{i,j} \le \sigma_{i,j} \\ 0 & \sigma_{i,j} \le d_{i,j} \le \sigma_{i,j} \\ 0 & 0 & -\sigma_{i,j} \le \sigma_{i,j} \\ 0 & 0 & -\sigma_{i,j} \le \sigma_{i,j} \\ \sum_{i,j} w_{i,j}^{\text{conn}} \left[\frac{e_{i,j}}{b_{i,j}} - 2\left(\frac{\sigma_{i,j}}{d_{i,j}}\right)^{2} - 2\left(\frac{\sigma_{i,j}}{d_{i,j}}\right)^{2} - 2\left(\frac{\sigma_{i,j}}{d_{i,j}}\right)^{2} - 2\left(\frac{\sigma_{i,j}}{d_{i,j}}\right)^{2} \\ 0 & 0 & -\sigma_{i,j} \le \sigma_{i,j} \\ 0 & 0 & -\sigma_{i,j} \le \sigma_{i,j} \\ \sum_{i,j} w_{i,j}^{\text{conn}} \left[\frac{e_{i,j}}{b_{i,j}} - 2\left(\frac{\sigma_{i,j}}{d_{i,j}}\right)^{2} - 2\left(\frac{\sigma_{i,j}}{d_{i,j}}\right)^{2} \\ 0 & 0 & -\sigma_{i,j} \le \sigma_{i,j} \\ 0 & 0 & 0 & -\sigma_{i,j} \le \sigma_{i,j} \\ 0 & 0 & 0 & -\sigma_{i,j} \\ 0 & 0 & 0 & -$$

Energy Terms

One Body	Two Body	Whole Body
	E	K F V R

Energy Terms

One Body	Two Body	Whole Body
Backbone - p_aa_pp - rama_prepro	Lennard-Jones - fa_atr - fa_rep	Radius of Gyration - rg
Side Chain - fa_dun - yhh planarity	Solvation - fa_sol	Contact Order - co
Reference - ref	Hydrogen Bond - hbond_lr_bb - hbond_sr_bb - hbond_bb_sc - hbond_sc	Structure Alignment - hs_pair - ss_pair - sheet

Energy Terms: Full-Atom

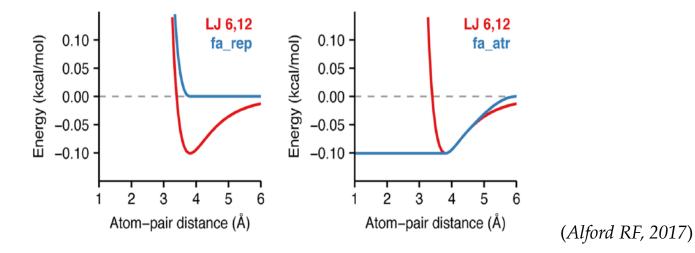
term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ,ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/ <i>kT</i>	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/ <i>kT</i>	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51
^a AII - arbitrary unit				-

 a AU = arbitrary units.

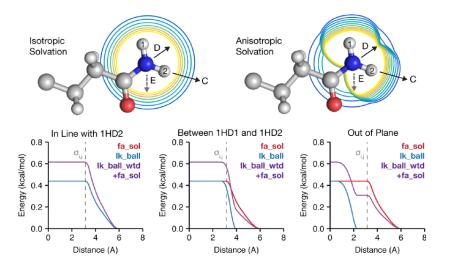
(Alford RF, 2017)

Energy Terms: Full-Atom

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaus ian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orien ation-dependent solution of polar atoms assuming ideal writes geometry	h	kcal/mol	50, 71
fa_intra_sol	Gaus ian exclusion implier colvator e enzy ety een orotein at as in the same rendu energy of interaction between two norborded courged doors so argeed by a distance d		kcal/mol	36
fa_elec	energy of interaction between two nonbodds I correct stoms separated by a distanced		kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen londs	1.0	kcal/mol	38, 49
hbond_sr_bb	energ y of long lange hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ,ψ angles	(0.7 kcal/m <mark>ol</mark>)/kT	kT	52
omega	backboue dependent pendty for cia a diledrals that defiate from 0° and trans a dihedrals that deviate from 80°		AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51


 $\overline{^{a}}$ AU = arbitrary units.

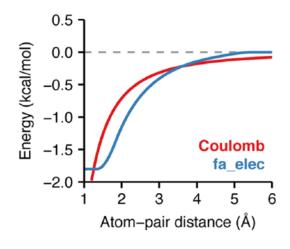
(Alford RF, 2017)


term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Van der Waals Interactions

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Implicit Solvation

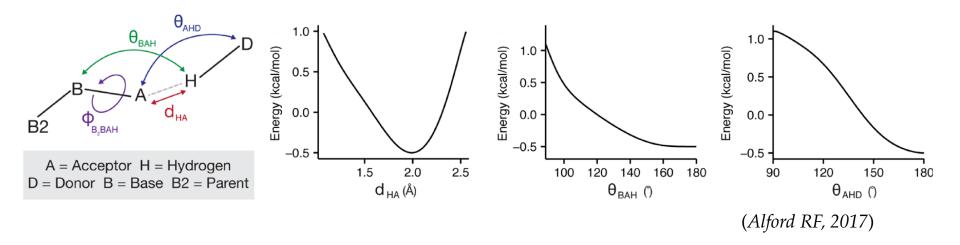


(Alford RF, 2017)

14

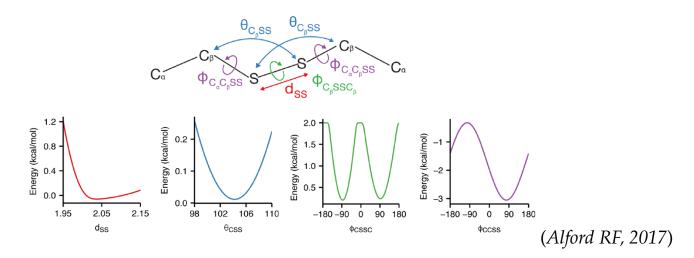
term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Electrostatics



15

⁽Alford RF, 2017)


term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

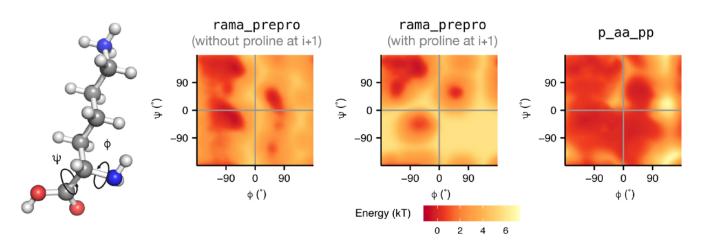
Hydrogen Bonds

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Disulfide Bond

Energy Terms: Full-Atom

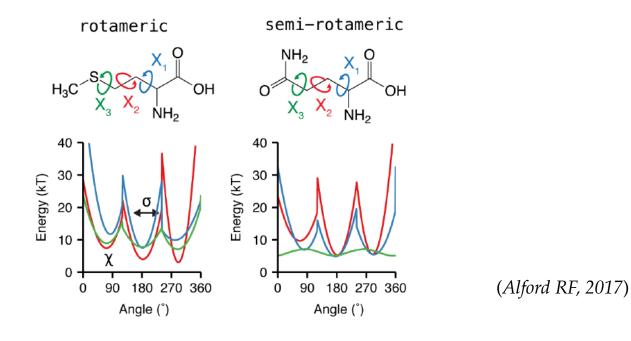
term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaus ian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orien ation-dependent solution of polar atoms assuming ideal writes geometry	h	kcal/mol	50, 71
fa_intra_sol	Gaus ian exclusion implier colvator e enzy ety een orotein at as in the same rendu energy of interaction between two norborded courged doors so argeed by a distance d		kcal/mol	36
fa_elec	energy of interaction between two nonbodds I correct stoms separated by a distanced		kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen londs	1.0	kcal/mol	38, 49
hbond_sr_bb	energ y of long lange hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ,ψ angles	(0.7 kcal/m <mark>ol</mark>)/kT	kT	52
omega	backboue dependent pendty for cia a diledrals that defiate from 0° and trans a dihedrals that deviate from 80°		AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51


 $\overline{^{a}}$ AU = arbitrary units.

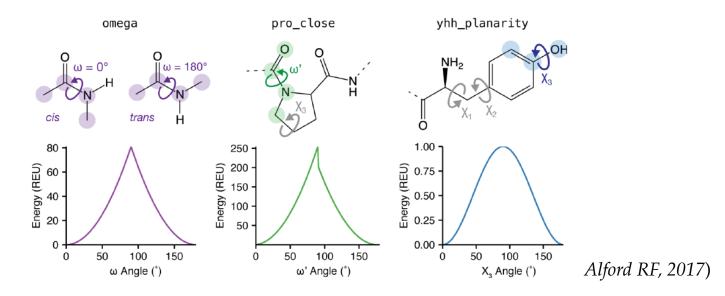
(Alford RF, 2017)

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/ <i>kT</i>	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Protein Backbone



(Alford RF, 2017)


term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 51
p aa pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/ <i>kT</i>	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ , ψ angles	(0.7 kcal/mol)/ <i>kT</i>	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

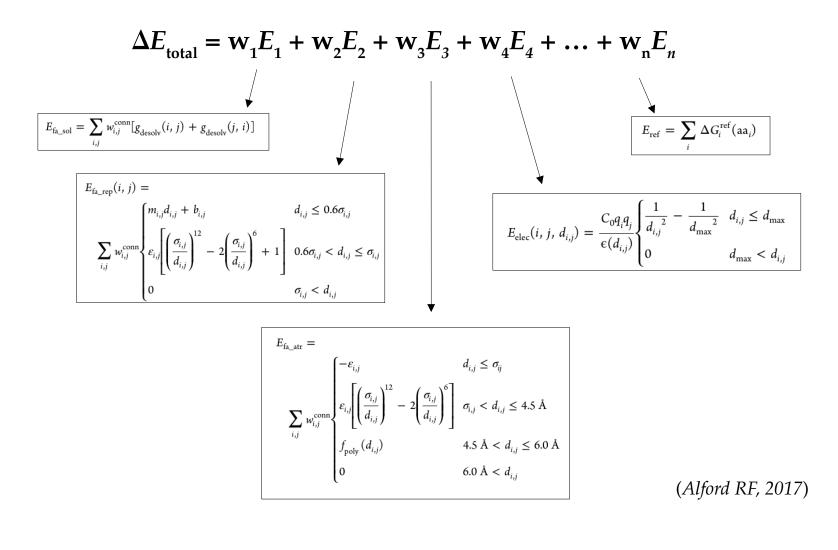
Protein Side-Chains

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/ <i>kT</i>	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/ <i>kT</i>	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Special-Case Torsions

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/ <i>kT</i>	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/ <i>kT</i>	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Special-Case, Design


Takes in account the unfolding energy of the amino acids

Adjusts amino acids frequencies during protein design

(Alford RF, 2017)

Weights:

Weights:

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ,ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 5 1
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51
GATT 1:				

 a AU = arbitrary units.

(Alford RF, 2017)

Some weights for specific energy terms are set to zero!

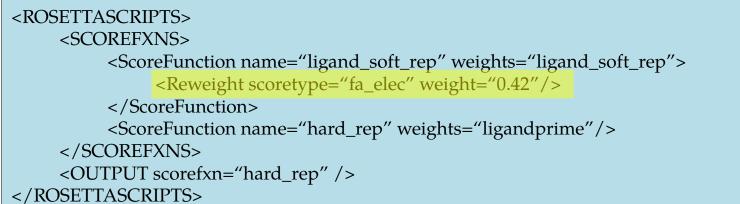
Weights:

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ,ψ angles given the amino acid type	(0.45 kcal/mol)/ <i>kT</i>	kT	50, 5 1
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/ <i>kT</i>	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51
AATT 1.1				

 a AU = arbitrary units.

(Alford RF, 2017)

You can modify the weights, if needes in special applications!

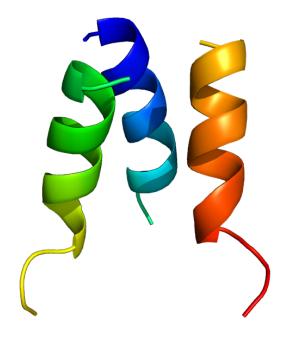

Modifying Weights:

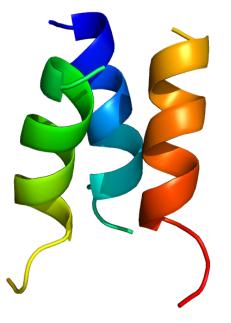
Using the command line:

- 1 score:weights <filename>
- 2 score:set_weight < scoreterm₁> \leq wt₁> \leq scoreterm₂> < wt₂>
- 3 score:patch <patchfile>

fa_atr = 0.423 fa_rep = 0.100

Using xml script file:


(Alford RF, 2017)

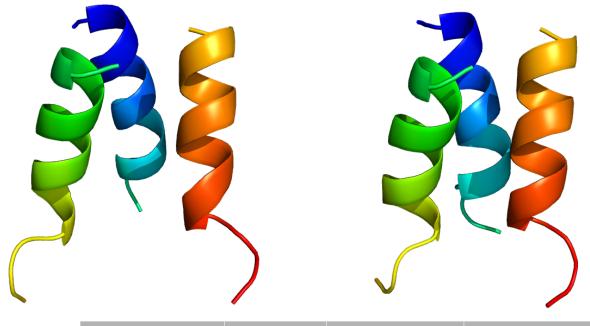


Conformation A (253 REU)

Conformation B (-82 REU)

Score File (score.sc):

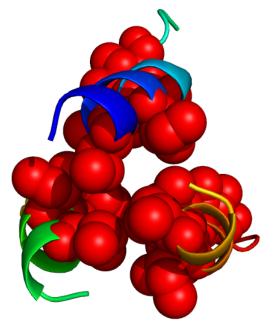
SCORE: score fa atr fa rep fa sol fa intra rep fa intra sol xover4 lk ball wtd fa elec pro close hbond sr bb hbond lr bb hbond bb sc hbond sc omega fa dun p aa pp yhh_planarity ref rama_prepro description 253.063 -181.52 45.561 SCORE: 149.367 0.702 17.998 -7.402 -1.488 5.473 -12.482236.014 2.073 0 0 7.578 0 0 -5.466 -3.345 Conformation A -82.141 -217.874 26.366 130.127 0.591 SCORE: 9.342 -10.943-36.763 1.125 -20.668-2.846 0.491 0 -3.441 0 54.899 0 -5.466 -7.08 Conformation B


Score File (score.sc):

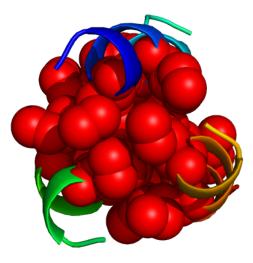
SCORE: score fa atr fa rep fa sol fa intra rep fa elec pro close hbond sr bb fa intra sol xover4 lk ball wtd hbond lr bb hbond bb sc hbond sc omega fadun paapp yhh planarity ref rama prepro description SCORE: 253.063 -181.52 45.561 149.367 0.702 17.998 -12.482 -7.402 -1.488 5.473 0 7.578 236.014 2.073 0 0 0 -3.345Conformation A -5.466 -82,141 -217,874 26.366 130.127 0.591 SCORE: 9.342 -10.943-36.763 1.125 -20.6680 0 -3.441 0.491 -2.8460 54.899 Conformation B -5.466 -7.08

Conformation A (253 REU)

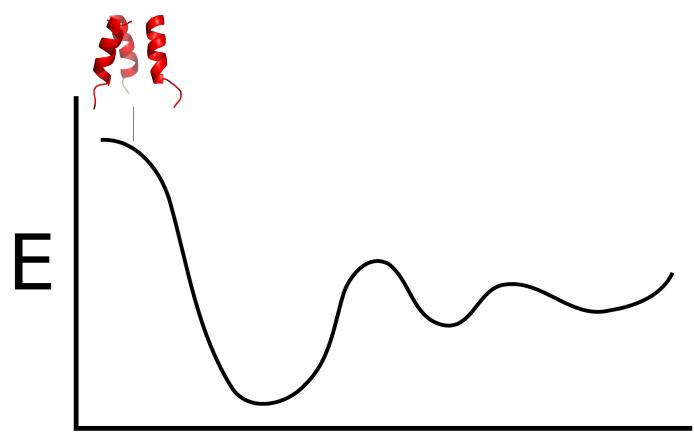
Conformation B (-82 REU)



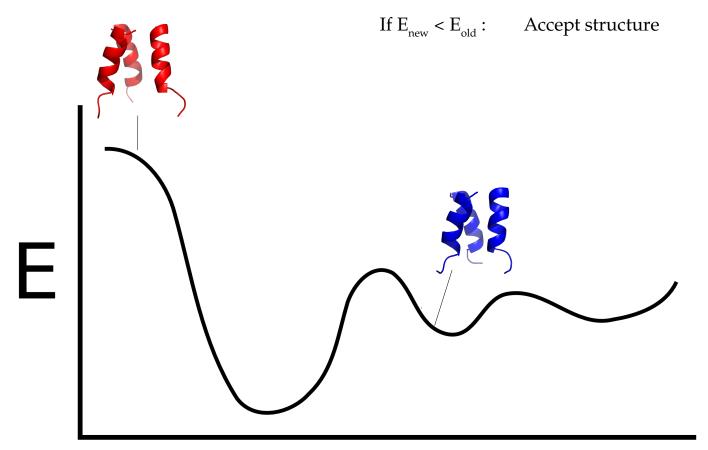
	score	fa_atr	fa_rep
Α	253.1	-181.5	45.6
В	-82.1	-217.9	26.4



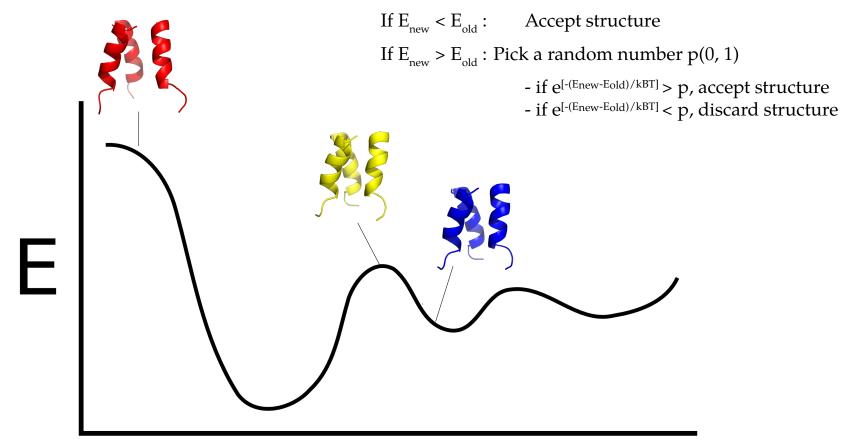
Conformation A (253 REU)


Conformation B (-82 REU)

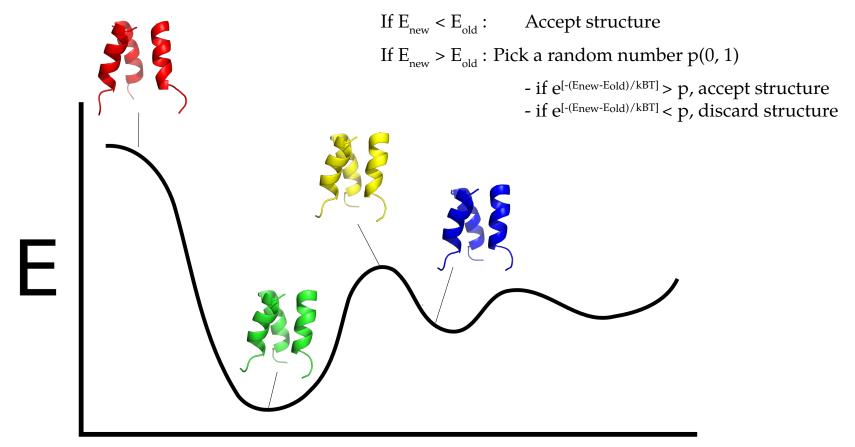
	score	fa_atr	fa_rep
Α	253.1	-181.5	45.6
В	-82.1	-217.9	26.4


Monte-Carlo Sampling in Rosetta:

Conformational Landscape

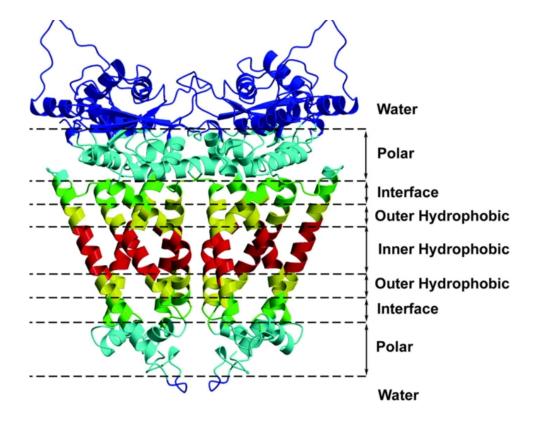

Sampling in Rosetta:

Conformational Landscape


Sampling in Rosetta:

Conformational Landscape

Sampling in Rosetta:



Conformational Landscape

Rosetta overcomes energy barriers to find global minimum.

Other functions: Membrane Proteins

Score functions for membrane proteins:

- mpframework_smooth_fa_2012
- ref2015_memb
- franklin2019

Other terms: Constraints

(Usually obtained from experimental data)

Atom Pair	Restrains a distance between Atom1 and Atom2
Dihedral	Restrains a dihedral angle
Angle	Restrains an angle
Coordinate	Restrains an atom to a fix XYZ position
Site	Restrains a residue to interact with another chain

. . .

Other terms: Biomolecules

biomolecule	term	description	unit	ref
noncanonical	mm_lj_intra_rep	repulsive van der Waals energy between two atoms from the same residue	kcal/mol	67
amino acids	mm_lj_intra_atr	attractive van der Waals energy between two atoms from the same residue	kcal/mol	67
	mm_twist	molecular mechanics derived torsion term for all proper torsions	kcal/mol	67
	unfolded	energy of the unfolded state based on explicit unfolded state model	AU ^a	67
split_unfolded_1b		one-body component of the two-component reference energy, lowest energy of a side chain in a dipeptide model system	AU	in the SI
	split_unfolded_2b	two-body component of the two-component reference energy, median two-body interaction energy based on atom-type composition	AU	in the <mark>SI</mark>
carbohydrates	sugar_bb	energy for glycosidic torsions	kcal/mol	70
DNA	gb_elec	generalized Born model of the electrostatics energy	kcal/mol	107
RNA	fa_stack	$\pi-\pi$ stacking energy for RNA bases	kT	113
	stack_elec	electrostatic energy for stacked RNA bases	kT	114
	fa_elec_rna_phos	electrostatic energy (fa_elec) between RNA phosphate atoms	kT	62
	rna_torsion	knowledge-based torsional potential for RNA	kT	62
	rna_sugar_close	penalty for opening an RNA sugar	kT	62

 $^{a}AU = arbitrary units.$

(Alford RF, 2017)

Other terms: Experimental Data

- Electron density
- Residual dipolar coupling (RDC)
- SAXs

Bibliography - Score Functions:

REF2015:

- Alford RF, et. al, **The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design**. *Journal of Chemical Theory and Computation*, **2017.** *13* (6), 3031-3048
- Park H, et. al Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules *Journal of Chemical Theory and Computation*, 2016. 12 (12), 6201-6212

Old Scorefxn (Talaris):

- O'Meara MJ, et. al, A Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. *Journal of Chemical Theory and Computation*, 2015.
- Leaver-Fay A, et. al Scientific benchmarks for guiding macromolecular energy function improvement. *Methods in enzymology*, **2013**. 523: p. 109.

Links:

<u>https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/score-types</u> <u>https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/scoring-explained</u>

