
Non-canonical amino acid (NCAA) parameterization using Rosetta

When designing peptides, one can find the vocabulary of the twenty canonical amino acids to be restrictive in
designing tight, specific binders to the receptor. Therefore, a framework needs to exist for modeling amino acids
which can have any sidechain chemistry, i.e., non-canonical amino acids (NCAAs). In order to include these NCAAs
into Rosetta design simulations, you must first parameterize them, which involves listing atoms and bonds and
their respective types, recording the initial geometry, assigning rotamers, etc. Thankfully, most of this process can
be handled automatically by the molfile_to_params_polymer.py script, but rotamer assignment still remains a
challenge for which Rosetta proposes multiple solutions. This tutorial will detail how to use each of these tools
in combination with molfile_to_params_polymer.py to go from a molfile (.sdf) of a NCAA to a parameter file
(.params) which is useable in Rosetta design simulations.

1. Using existing canonical parameters for non-canonicals

The simplest way of assigning rotamers to a NCAA is to use a set of rotamers which already exist and simply
attach them to your NCAA. However, this requires that your NCAA be quite similar to an existing canonical AA.
For this step, we will be parameterizing a 3,4,5-trifluorophenylalanine (abbreviated in this tutorial as TFF), which
highly resembles a phenylalanine. First, make a directory for your params files and cd into that directory.

mkdir NCAA_params
cd NCAA_params

The molfile for TFF is located at ../input_files/TFF.sdf. There are a few things to note about this input
which are required for proper parameterization by Rosetta. First of all, you should notice that the backbone is in a
dipeptide form where each end of the amino acid is extended to a methyl group representing the adjacent C-alpha
atoms of neighboring amino acids. This is necessary for Rosetta to understand how to connect this AA to adjacent
AA’s. In the file itself, there is also a set of lines which inform Rosetta which atoms correspond to the various
atoms of the backbone, which atoms connect to the upper and lower AA’s in the sequence, and properties such as
charge, aromaticity, and chirality. Because of these instructions, to parameterize this NCAA, all we have to run is:

python <RosettaDir>/main/source/scripts/python/public/molfile_to_params_polymer.py \
--clobber --polymer --no-pdb --name TFF --use-parent-rotamers PHE \
-i ../input_files/TFF.sdf

Note the usage of --use_parent_rotamers in this command, as this is what establishes which canonical AA
rotamers you want to use. If you look at the generated parameter file with cat TFF.params, you should see a line
which says ROTAMER_AA PHE, indicating phenylalanine’s rotamers are being used for this AA.

2. Rigorous rotamer calculation using MakeRotLib

In 2012, Renfrew et. al. developed MakeRotLib, for generating NCAA rotamers through minimization of iterated
initial conformational states using a hybrid Rosetta/CHARMM energy function. This protocol remains the most
rigorous calculation of NCAA rotamers that exists in Rosetta, but due to its rigor, its runtime is not suitable for
large libraries of NCAAs. In addition, the runtime scales exponentially with the number of chi angles and caps
at 4 chis, so this protocol is also not suitable for highly flexible sidechains. Finally, MakeRotLib is not capable of
handling anything other than monosubstituted alpha amino acids, so if your amino acid structure is exotic, it won’t
be able to be processed by MakeRotLib. To demonstrate the functionality of MakeRotLib, you will parameterize
an amino acid with an ethyl group as a sidechain (abbreviated as EAA in this tutorial). Similar to the previous
case, EAA.sdf is in dipeptide form and has the necessary instructions for Rosetta to parameterize the molecule.
Run molfile_to_params_polymer.py to get the parameter file:

python <RosettaDir>/main/source/scripts/python/public/molfile_to_params_polymer.py \
--clobber --polymer --no-pdb --name EAA -i ../input_files/EAA.sdf

1

https://doi.org/10.1371%2Fjournal.pone.0032637

However, since we excluded --use_parent_rotamers, this parameter file is not ready for use in Rosetta
yet. In order to run MakeRotLib and generate the rotamers, you will need an options file, supplied at
../input_files/EAA_makerotlib_options.in. This file specifies the angle ranges over which MakeRotLib
should iterate, the number of chi angles in the sidechain, and initial guesses as to how many chi angle bins there
are and where they lie. For this tutorial, the options file will consider all possible phi and psi angle values at
increments of 10 degrees, every value of the single chi angle at 30 degree increments, and assume there are 3 chi
rotamer bins each spaced 120 degrees apart (which is reasonable since the canonicals generally show this pattern
as well). Now to run MakeRotLib:

<RosettaDir>/main/source/bin/MakeRotLib.default.linuxgccrelease \
-extra_res_fa ./EAA.params -score:weights mm_std \
-options_file ../input_files/EAA_makerotlib_options.in

This calculation should take a few minutes, after which you should have a ton of EAA_* files in your current
directory. This directory contains logs from running MakeRotLib as well as a .rotlib file for each pair of phi/psi
angle values. The final objective is to consolidate all of these files into a single .rotlib, and add a reference to
this rotlib into the parameter file:

for i in `seq -170 10 180`; do
for j in `seq -170 10 180`; do

cat EAA_180_${i}_${j}_180.rotlib >> EAA.rotlib
done

done
echo "NCAA_ROTLIB_PATH $PWD/EAA.rotlib" >> EAA.params
echo "NCAA_ROTLIB_NUM_ROTAMER_BINS 1 3" >> EAA.params
rm -rf EAA_*

Now that the file EAA.params has been assigned rotamers, it is now ready to use in Rosetta. Note that the
NCAA_ROTLIB_PATH is hardcoded, so if you use the example .params file in output_files, you will need to change
this path to match your environment.

3. Small molecule conformers as NCAA rotamer libraries (FakeRotLib)

While MakeRotLib is the most accurate method for rotamer construction in Rosetta, it does not apply in many
contexts, as was previously discussed. To address some of these shortcomings, we consider the NCAA as a small
molecule and define the rotamers of the NCAA as low energy conformers of the “small molecule”. The implemen-
tation of this idea is the fake_rotlib.py script, which uses RDKit to generate conformations of the NCAA, score
the conformations using the UFF forcefield, and utilize the N lowest energy conformations in the parameter file as
“PDB rotamers”. The distinction between this implementation of the rotamer library and the previous methods
is that the previous methods define the distribution of rotamers and then score a given conformation according
to its position in that distribution, whereas PDB rotamers store a set of acceptable conformations and randomly
draws from these conformations when modeling the residue. Since PDB rotamers don’t have to fit into the distri-
bution parameters accepted by Rosetta, pretty much any NCAA can be accommodated by PDB rotamers. On the
other hand, PDB rotamers inherently discretize the conformational space, are not compatible with some movers,
and generally require more compute time and memory in modeling. To allow both types of rotamer libraries to
be built, fake_rotlib.py also has functionality to generate a rotamer distribution file (.rotlib) from the PDB
rotamers (as long as the NCAA has four or less chi angles). In addition to rotamer modeling, fake_rotlib.py
automates a few other steps of the process, including dipeptide capping, writing the params instructions, and
running molfile_to_params_polymer.py.

As a demonstration of fake_rotlib.py, we parameterize another phenylalanine derivative (with an attached Bis(2-
chloroethyl)amine group), abbreviated as MFF in this tutorial. Since this molecule has far more chi angles than
any other we’ve parameterized before, we will be using PDB rotamers in lieu of a .rotlib file. fake_rotlib.py
depends on RDKit to generate conformers, so we need a python with it installed. We also need to move the
fake_rotlib.py script into the Rosetta source:

2

cp ../scripts/fake_rotlib.py <RosettaDir>/main/source/scripts/python/public/

With a python interpreter with RDKit active, simply run:

python <RosettaDir>/main/source/scripts/python/public/fake_rotlib.py \
--input ../input_files/MFF.sdf --dip -n 100

mv ../input_files/MFF* ./

Note that the --dip flag is used here because the input MFF.sdf is already in dipeptide form and has parameteri-
zation instructions pre-generated. If instructions need to be generated, run without this flag and ensure that the
input is NOT in dipeptide form (either neutral or zwitterionic backbone is acceptable). This causes two important
files to be generated: the MFF.params which possesses a reference to the PDB rotamers file MFF_rotamer.pdb.
MFF_rotamer.sdf is also here, but this is an intermediate file used input to molfile_to_params_polymer.py.
Regardless, as long as MFF_rotamer.pdb remains in the same directory as MFF.params, the file is ready to be used
in Rosetta simulations.

3

	Non-canonical amino acid (NCAA) parameterization using Rosetta
	1. Using existing canonical parameters for non-canonicals
	2. Rigorous rotamer calculation using MakeRotLib
	3. Small molecule conformers as NCAA rotamer libraries (FakeRotLib)

