
Samuel Schmitz
Rosetta Workshop

April 26, 2017

Samuel.Schmitz@vanderbilt.edu

Antibody Design

Overview

Introduction to Protein Design

How it works:

The Packer

Resfiles

Overview of the Tutorial:

Input files

Protocol

Analysis

Rosetta Design Applications:

Novel Folds

Protein-Ligand interactions

Protein Design is the Inverse Protein

Folding Problem

Sequence Structure
R

E

W
A

Y T

P I

H K

F S

D
Protein Folding Problem

Inverse Folding Problem

Given a protein fold – which primary
sequence(s) can fold into it?

Protein Design Uses the RosettaEnergy

Function and Local Rotamer Libraries

Energy function
Statistically derived
potential function
•VDW interaction
•solvation
•hydrogen bonding
potential
•pair wise
interactions
•rotamer
probability

Local Rotamer
Bias
Approximate interactions

within sidechain using
the distribution of
sidechain confor-
mations (rotamers) seen
in known protein
structures

Simulated Annealing
Monte Carlo
optimization

©Jens

Meiler

How Rosetta Design works…

Side chain rotamer optimization

• Rotamer = rotational

isomer

• Sampling all chi angles is

computationally expensive

• Rotamers fall into discrete

bins – can simplify this

with a rotamer library

Adapted from J. Meiler

“The Packer”

In general, the purpose is to optimize rotamers on a fixed
backbone.

Native (repack)

All Amino Acids (design)

Specified Amino Acids (guided design)

Steps of the packer:

1. Detect neighbors

2. Build rotamers

3. Calculate energies

4. Simulated annealing/MC Accept

Slide adapted from A. Leaver-Fay

The Packer-What it’s Actually Doing

1. Random rotamer substitution

• Set of rotamers to be considered

are specified

2. Evaluate energy

3. Accept/Reject

• Monte Carlo criterion

• Simulated annealing from high to

low temperature

4. Return best energy

How to Control the Packer…

The Residue File Guides Design

You can also combine commands (see tutorial).

25 A POLAR NOTAA K

When on separate lines (say at first a range, then at specific residues):

5-20 A ALLAA

15 A PIKAA Y

Residue 15 on chain A will only sample Y, whereas 5-14 and 16-20 will sample all

ALLAA #allow all 20 amino

ALLAAwc #allow all 20 amino(default)

ALLAAxc #allow all amino acids except cysteine

POLAR #allow only canonical polar amino acids

APOLAR #allow only canonical non-polar amino acids

NOTAA #disallow only the specified amino acids

PIKAA #allow only the specified amino acids

NATAA #allow only the native amino acid (repack)

NATRO #preserve input rotamer

EMPTY #disallow all canonical amino acids

NC <ResidueTypeName> #allow the specific non canonical residue

https://www.rosettacommons.org/docs/wiki/rosetta_basics/file_types/resfiles

Basic Format of Residue Files

<Header> #instructions for all positions not specified in body

#The header can also use commands such as EX 1, EX 2, and

USE_INPUT_SC to apply to all positions not specified below

START #keyword

<Body> #instructions for specific chains and identifiers

<PDBNUM> <CHAIN> <COMMANDS>

#Basic format for lines in body

* <CHAIN> <COMMANDS>

#used to specify a command for an entire chain

For example, a resfile that does nothing:

NATRO #keeps all input rotamers (and hence identity)

START

Residue File Example

Resfile that designs everything:

ALLAA

START

Resfile that only repacks chain H:

NATRO

START

* H NATAA

Resfile that does nothing:

NATRO #keeps all input rotamers (and hence identity)

START

What will the Packer do?

NATRO

START

* A NATAA

What will the Packer do?

NATRO

START

30 A PIKAA FY

20-35 A ALLAAxc

Tutorial Overview – Antibody design in

Rosetta

Tutorial Overview – Antibody design in

Rosetta

1.Antibody single-state design

2.Antibody multistate design

Antibody single-state design

Also known as redesign, computational affinity maturation

Goal: take an existing antibody-antigen complex and optimize

the antibody sequence for tighter binding

Antibody

Antigen

Design

PDB ID 4yk4

Single-state design protocol overview

Create
Input

Download
PDB

Process
PDB

Relax Run FastRelax

Design
Create

XML file
Create
resfile

Run
Control/D

esign

Analysis
Create Sequence

Logo

Inspect
best

sequences

FastRelax

FastRelax is designed to optimize the protein backbone/side chains to model at

an energy minimum

Helps relieve clashes that may introduce artifacts into design

Combs, et al, Nat. Prot. 2013

FastRelax

input_files/relax.command:

~/rosetta_workshop/rosetta/main/source/bin/relax.def

ault.linuxgccrelease @relax.options –s

4HKX_renum.pdb

input_files/relax.options:

-linmem_ig 100 # specify memory to store rotamer pair

interactions

-use_input_sc # Include rotamers from the input

structure

-nstruct 1 # Generate 1 model

-relax:fast # Do a small cycle number fast relax

-relax:constrain_relax_to_start_coords

Add coordinate constraints to backbone

heavy atoms, based on the input structure.

-scorefile relax.fasc

Single state design

Please open input_files/design.xml

Where should you start looking?

<PROTOCOLS>

Run the design protocol

<Add mover=design />

Calculate interface metrics for the final sequence

<Add mover=analyze />

</PROTOCOLS>

Design movers

Design mover:

<PackRotamersMover name=design scorefxn=talaris2014

task_operations=ifcl,rrf />

Task Operations:

Include rotamer options from the command line

<InitializeFromCommandline name=ifcl />

Design and repack residues based on resfile

<ReadResfile name=rrf filename=4HKX.resfile/>

Design control

Design mover:

<PackRotamersMover name=design scorefxn=talaris2013

task_operations=ifcl,rrf />

Task Operations:

Include rotamer options from the command line

<InitializeFromCommandline name=ifcl />

Design and repack residues based on resfile

<ReadResfile name=rrf filename=4HKX_control.resfile/>

Important to see how much improvement designs have over a

nondesigned model

Please open input_files/design_control.xml

Making resfiles

Use the python script located in

scripts/define_interface.py

Calculates residues on each side of the interface

using a side chain cutoff (default 5 A)

If any atom on a residue is within 5 A of any atom

on a residue on the opposing chain – it’s

considered to be an interface residue

Making resfiles

--side1=SIDE1 # the chains that make up one side of

the interface (as a string, e.g. 'AB')

--side2=SIDE2 # the chains that make up the other side of

the interface (as a string, e.g. 'CD')

--nearby_atom_cutoff=NEARBY_ATOM_CUTOFF

SC distance cutoff to define a residue as part of the

interface. If any SC atom from a residue on one side is

within this cutoff of a residue on the other side it's

considered to be in the interface. Default=5.0

--output=OUTPUT # Output name for resfile

--design-side=DESIGN_SIDE

Side of interface to design - either 1 or 2. Defaults to 1.

--native # Just repack the residues on the side flagged "design side”

--repack # Repack side of the interface not being designed

Analysis metrics

Total score: score of the entire complex

Interface score: score of residues that are at the interface

Binding energy (ddG, dG_separated): difference in energy

between the bound and unbound partners

Binding density (dG_separated/dSASAx100): ddG divided by the

buried surface area. Prevents a low binding energy by increasing

buried surface area.

Analysis movers
<InterfaceAnalyzerMover name=analyze scorefxn=talaris2014

packstat=0 pack_input=0 pack_separated=1 fixedchains=H,L />

packstat: activates packstat calculation; can be slow so it

defaults to off

fixedchains: comma-delimited list of chain ids to define a

group in the interface.

pack_separated: repack the exposed interfaces when

calculating binding energy? Usually a good idea.

pack_input: prepack before separating chains when

calculating binding energy? Useful if these are non-Rosetta

inputs

Sequence logo

Useful to quickly see which residues are being designed,

and what amino acids are being put there

Made by WebLogo application through design_analysis.py

http://weblogo.berkeley.edu/

Antibody multistate design

Multistate design: optimize a sequence for low energy in multiple

conformations (states)

Redesign an antibody to recognize multiple targets

Antibody

Antigen 1
Antigen 2

PDB ID 4yk4

Multistate design protocol overview

Create
Input

Download
PDB

Process
PDB

Relax Run FastRelax

Design
Create

XML file
Create
resfile

Run
Control/D

esign

Analysis
Create Sequence

Logo

Inspect
best

sequences

REstrained CONvergence in MSD (RECON)

Sevy, A. M., Jacobs, T. M., Crowe, J. E. & Meiler,

J. PLoS Comput. Biol. 11, e1004300 (2015).

REstrained CONvergence in MSD (RECON)

Sevy, A. M., Jacobs, T. M., Crowe, J. E. & Meiler,

J. PLoS Comput. Biol. 11, e1004300 (2015).

MSDMover 1

MSDMover 2

MSDMover 3

FindConsensusSequence

Multistate design protocol

<PROTOCOLS>

Run four rounds of design

<Add mover=msd1 />

<Add mover=msd2 />

<Add mover=msd3 />

<Add mover=msd4 />

Find a consensus sequence for all states

<Add mover=finish />

Calculate interface metrics for the final sequence

<Add mover=analyze />

</PROTOCOLS>

Multistate design movers

<PackRotamersMover name=design scorefxn=talaris_cst

task_operations=ifcl />

<MSDMover name=msd1 design_mover=design

constraint_weight=0.5 resfiles=4HKX.resfile,3UBQ.resfile />

<MSDMover name=msd2 design_mover=design

constraint_weight=1.0 resfiles=4HKX.resfile,3UBQ.resfile/>

<MSDMover name=msd3 design_mover=design

constraint_weight=1.5 resfiles=4HKX.resfile,3UBQ.resfile />

<MSDMover name=msd4 design_mover=design

constraint_weight=2.0 resfiles=4HKX.resfile,3UBQ.resfile />

<FindConsensusSequence name=finish scorefxn=talaris_cst

resfiles=4HKX.resfile,3UBQ.resfile />

Multistate design movers

<SCOREFXNS>

<talaris_cst weights=talaris2014.wts >

<Reweight scoretype=res_type_constraint weight=1.0 />

</talaris_cst>

</SCOREFXNS>

Have to reweight res_type_constraint term to allow for residue constraints!

If it’s not turned on protocol will run but will give a warning

Multistate design tips

You can use multiple resfiles – lets you be more flexible in which residues are

being designed/repacked

Resfiles are matched to structure by order of input – make sure these are in

the same order!

multistate_design.xml:
<MSDMover name=msd1 design_mover=design

constraint_weight=0.5 resfiles=4HKX.resfile,3UBQ.resfile />

multistate_design.options:
-s 4HKX_relax.pdb 3UBQ_relax.pdb

Cysteine design is not recommended

Make sure all resfiles have same number of residues being designed!

Rosetta Protein Design

applications

De Novo Design of a Novel Fold

Top7 “back-of-the envelope”

drawn topology not found in the

PDB at time of design

Iterative fixed backbone design +

backbone perturbations

Kuhlman, B. et al. (2003). Design of a novel

globular protein fold with atomic-level accuracy.

Science 302, 1364–1368.

Atomic Level Accuracy of Design (blue)

to X-ray structure (red)

Kuhlman, B. et al. (2003). Design

of a novel globular protein fold

with atomic-level accuracy.

Science 302, 1364–1368.

Design of epitope scaffolds

Extract a known neutralizing epitope from an antigen, place onto a

scaffold protein

Fold a helix-loop-helix

motif, redesign sequence

to increase stability

Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2015).12-

216

Redesign of HIV antibody with increased potency

Willis, J. R. et al.

Redesigned HIV

antibodies

exhibit enhanced

neutralizing

potency and

breadth. J. Clin.

Invest. 125,

2523–2531

(2015).

Additional Design Applications

• Novel Enzyme Design – RosettaMatch and RosettaDesign

Siegel, J.B. et al. (2010). Computational design of an enzyme catalyst for a

stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313

• Novel Protein Therapeutic Design

Fleishman, S.J. et al. (2011). Computational design of proteins targeting the conserved

stem region of influenza hemagglutinin. Science 332, 816–821.

• Design of a thermally stabilized enzyme

Korkegian, A., Black, M.E., Baker, D., and Stoddard, B.L. (2005). Computational

thermostabilization of an enzyme. Science 308, 857–860.

• Design of self-assembling proteins as nanomaterials

King, N.P., Sheffler, W., Sawaya, M.R., Vollmar, B.S., Sumida, J.P., Andre, I., Gonen, T.,

Yeates, T.O., Baker, D. (2012). Computational Design of Self-Assembling Protein

Nanomaterials with Atomic Level Accuracy. Science 336 1171-1174

Additional Design Applications

• Design of symmetric superfolds to understand protein folding

evolution

Fortenberry, C. et al. (2011). Exploring symmetry as an avenue to the

computational design of large protein domains. J. Am. Chem. Soc. 133,

18026–18029.

• Rational epitope design

Wu, X., et al. (2010). Rational design of envelope identifies broadly

neutralizing human monoclonal antibodies to HIV-1. Science 329, 856– 861.

• Rational vaccine design

Jardine, J., et al. (2013). Rational HIV Immunogen Design to Target Specific

Germline B Cell Receptors. Science.

