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Background 
Rosetta and its affiliated script repositories collectively compose the most comprehensive toolbox for in 
silico macromolecular design. The greatest utility of Rosetta is arguably not that it can generate random 
foldable sequences, but that it provides a highly customizable user platform for design and modeling in 
a huge variety of contexts. One of the primary motivations for integrating the BCL into Rosetta was that 
we wanted to be able to do small molecule design with all the infrastructure that has been built for in 
silico modeling in Rosetta. In Tutorial 5, you experienced how protein modeling tools in Rosetta could be 
used in conjunction with small molecule modeling tools in the BCL to perform nuanced structure-based 
design of Abl kinase inhibitors.  
 
In this tutorial, we will simultaneously perform sequence design on a receptor protein and small mole-
cule design on an inhibitor scaffold. As of this writing, this is a unique feature of the BCL-Rosetta integra-
tion that is unavailable in any other software package. 
 
Here, we will perform chemical genetics, or chemogenetics, in silico design experiments. Chemical ge-
netics is the process of redesigning proteins in tandem with a small molecule modulator to create a high 
affinity pair. It can be challenging to selectively inhibitor protein isoforms without also inhibiting their 
homologs. Chemical genetics provides an important means to determine the functions of specific pro-
teins in the absence of confounds that occur by inhibiting homologous proteins. Moreover, this ap-
proach has been utilized extensively in neuroscience to create Designer Receptors Activated Exclusively 
by Designer Drugs (DREADDs), which can be expressed and activated with drug in vitro or in vivo to con-
trol the activity of neurons.  
 
Our example system will be the Bromodomain and Extra Terminal (BET) family protein BRD2. BRD2 plays 
an important role in transcription regulation. We will mimic the experimental bump-and-hole experi-
ment that Runcie et al. 20181 performed by enumerating each of their designs in silico. Subsequently, 
we will experiment with more aggressive redesign of both the protein and scaffold than was performed 
in Runcie et al. 20181. 
  



Part 1: Preparing a small molecule scaffold for design 
Our input scaffold can be prepared just as in Tutorial 5; however, instead use files “Tutorial_6/lig-
and_prep/XYZ.pdb”. We will not walk through this step explicitly in this tutorial; please feel free to look 
back at Tutorial 5 Part 1 or use the prepared files in Tutorial_6/ligand_prep/.  
 
Recall that the Rosetta atom indices that we will reference in our XML scripts will differ from the atom 
indices in “Tutorial_6/ligand_prep/XYZ.pdb”. The “bcl_rosetta.pdb” file was generated from 
restype_converter using “XYZ.params” as input and will correspond to the atom indices refer-
enced in this tutorial.  
 
Congratulations! Move on to Part 2. 
  



Part 2: Ranking antagonists for BRD2 L383V against wild-type BRD2 
 
There are times when you do not want to stochastically sample ligand modifications but instead want to 
scan a scaffold systematically with a few perturbation types. For example, it is often useful to scan indi-
vidual ring with a few individual or paired halogen or methoxy substitutions. In these cases, the number 
of modifications that need to be made often number only in the dozens to hundreds and are quite com-
putationally tractable. The co-space of the two BRD2 variants and inhibitory scaffold modifications quali-
fies as such a scenario. 
 
While it is on the to-do list, there is currently not a simple Rosetta command-line application with which 
to perform these types of systematic studies (I swear I am working on it). The closest thing we have is 
the molecule:Mutate application in the BCL; however, if you use that then you need to create 
params files for every small molecule and then still pass it into Rosetta or PyRosetta to do the scoring 
anyway. Thus, independent of whether you use RosettaScripts or PyRosetta, there is a bit of scripting 
that needs to be done. 
 
But not to worry, we can do it.  
 
As was done in Runcie et al. 20181, we will modify three distinct regions of our starting scaffold: 
 

 
Figure 1. BRD2 chemogenetics design scaffold from Runcie et al. 2018. The region highlighted in orange will be derivatized 
with methoxy groups. The regions highlighted in blue and red will be the “bump” regions in our bump-and-hole simulation.  

 
 
Because each of these modifications are effectively just substitutions, we can easily prepare three 
AddMedChem mutates in our RosettaScripts protocol. We will make one mutate for each of the “bump” 
regions and one mutate controlling whether the methoxy is added to position 8 or 9 on the scaffold (as 
represented in Runcie et al., 2018,1 not based on our atom indexing). 
 



 
 
 
<BCLFragmentMutateMover name="add_medchem_bump_r1"  

ligand_chain="X"  

object_data_label="AddMedChem( 

ov_shuffle_h=false,ov_reverse=false, 

medchem_library=%%bump_r1%%,  

druglikeness_type=None, 

mutable_atoms=0)" 

/> 

 
<BCLFragmentMutateMover name="add_medchem_bump_r2"  

ligand_chain="X"  

object_data_label="AddMedChem( 

ov_shuffle_h=false,ov_reverse=false, 

medchem_library=%%bump_r2%%,  

druglikeness_type=None, 

mutable_atoms=0)" 

/> 

 
<BCLFragmentMutateMover name="add_medchem_methoxy_scan"  

ligand_chain="X"  

object_data_label="AddMedChem( 

ov_shuffle_h=false,ov_reverse=false, 

medchem_library=%%methoxy_scan_frag%%,  

druglikeness_type=None, 

mutable_atoms=%%methoxy_res%%)" 

/> 

 
Notice that the first two mutates, add_medchem_bump_r1 and add_medchem_bump_r2, each 
receive a variable for a different medchem fragment.  Similarly, the add_mechem_methoxy_scan 

mutate has a variable to specify the atom index to which the methoxy will be added. All we need to do is 
loop over the combinations in our wrapper shell script.  
 
But before we get to that, there is another important detail. Let’s look at our scaffold. 
 



 
Figure 2. Bound pose of our example scaffold in the BRD2 binding pocket. The residue that was mutated in Runcie et al. 2018 
is L383. 

 
The first bump site will be grown from a sp3 carbon atom. Adding two heavy atom  substituents to this 
carbon atom will create a stereocenter. We need to be careful to create the correct stereoisomers of 
our molecules. You will notice in the above mutate definitions that ov_shuffle_h and ov_reverse 
are set to false in all cases. This means that each and every time we run this script and add a fragment to 
this carbon atom, we will remove the lowest index hydrogen atom to make the addition. It will not be 
random. It will not start with the highest index hydrogen atom.  
 
Therefore, we can define the sequence in which we perform our mutates to achieve the correct stereo-
chemistry.  
<ParsedProtocol name="run_a" mode="sequence"> 

<Add mover_name="add_medchem_methoxy_scan"/> 

<Add mover_name="add_medchem_bump_r2"/> 

<Add mover_name="add_medchem_bump_r1"/> 

</ParsedProtocol> 

 
Let’s add a few more options to the run_a protocol so that we can apply the correct residue to position 
383, minimize the scaffold, and relax after adding the bumps.  
<ParsedProtocol name="run_a" mode="sequence"> 

<Add mover_name="mutate"/> 

<Add mover_name="min_cycle_soft"/> 

<Add mover_name="min_cycle_hard"/> 

<Add mover_name="add_medchem_methoxy_scan"/> 

<Add mover_name="add_medchem_bump_r2"/> 

<Add mover_name="add_medchem_bump_r1"/> 

<Add mover_name="min_cycle_soft"/> 

<Add mover_name="min_cycle_hard"/> 

<Add mover_name="relax_cycle"/> 

<Add filter_name="score_filter"/> 

<Add mover_name="add_scores"/> 

</ParsedProtocol> 

 



 
Run the following command-line to create just one sample structure using this protocol: 
 
bash scripts/submit.local_sample.sh ./ 

 
Compare that structure to the crystallographic structure from Runcie et al. 2018. Does the stereochem-
istry match? How about the binding mode? Run that command again, but first set ov_reverse=true 
for one or more of the AddMedChem mutates. Did it change the resulting structure the way that you 
anticipated? 
 
Cool beans! Let’s keep going. We’ll make a second protocol where we skip performing add_med-
chem_bump_r1, which will mimic designs that have a hydrogen atom instead at that position. Once 
this is completed, we’re ready to loop over all our fragments.  
 
<ParsedProtocol name="run_b" mode="sequence"> 

<Add mover_name="mutate"/> 

<Add mover_name="min_cycle_soft"/> 

<Add mover_name="min_cycle_hard"/> 

<Add mover_name="add_medchem_methoxy_scan"/> 

<Add mover_name="add_medchem_bump_r2"/> 

<Add mover_name="min_cycle_soft"/> 

<Add mover_name="min_cycle_hard"/> 

<Add mover_name="relax_cycle"/> 

<Add filter_name="score_filter"/> 

<Add mover_name="add_scores"/> 

</ParsedProtocol> 

 
bash scripts/submit.local_serial.sh ./ 

 
Then we can analyze our results: 
 
bash scripts/get_best_ave.sh 1 

These may not be terribly impressive. Instead of making one model of each, let’s make 10 and take the 
average to potentially reduce some of the noise in the ranking. Change the nstruct to 10 in the Chemo-
genetics.sh script and re-run. 
 
While you wait for these to run, you can skip this block of questions highlighted in light gray. Just come 
back and fill it out when all of your samples are done.  
 
Let’s analyze the results using the best scoring protein-ligand interface from each of the 10 runs: 
 
bash scripts/get_best_scores.sh 

 
Hmm… And one more time by taking the final result as the average across all 10 structures. 
 
bash scripts/get_best_ave.sh 10 



 
Averaging across multiple structures seems to improve the quality of the binding affinity estimates (or at 
least, it did when I gave it a whirl). You do not have to do it, but previously I benchmarked our ranking 
ability on this system by averaging across 50 models of each system. The best round is shown plotted 
below: 
 

 
Figure 3. In silico replication of Runcie et al. L383 vs. V383 bump-and-hole design benchmark. Experimental binding affinity 
differences between L383 and V383 on the x-axis1; predicted differences on y-axis. 

 
However, I did these 5 independent times and found that generally our Pearson correlations ranged 
from 0.65 to 0.80 for the IC50 set and 0.70 to 0.90 for the Kd set, which is consistent with the accuracy 
we would expect based on Shannon’s RosettaLigand benchmarks2. As the Rosetta score function for pro-
tein-ligand interactions is improved, our ability to perform chemogenetics design with these types of 
protocols will naturally improve as well.  
 
Repeat the enumeration but change the script to only run on the L383A variant. This way, we can com-
pare results of L383A against wild-type and L383V. Once you have completed that, see if you can answer 
the questions below. 
 
Which BRD2 variant, wild-type, L383V, or L383A, is most frequently found amongst the optimized mu-
tant-ligand pairs? In other words, which variant has better RosettaLigand interaction energies with more 
ligand designs?  
 
Which scaffold modifications are most frequently found in the optimized mutant-ligand pairs? Are your 
findings consistent with the bump-and-hole approach? How do they compare to the results in the manu-
script1,3? 
 
I found BRD2 L383A to be the most frequent mutant in the high affinity pairs. I also found the hole intro-
duced by L383A was frequently filled with either an ethyl or propyl sidechain. These results are con-
sistent with the findings of both manuscripts. This is good news – it suggests that we can successfully 
capture the primary effects of the bump-and-hole approach for this system. 
 
Awesome, you finished Part 2. Let’s continue with some more extensive design in Part 3. 
 



 
Part 3: Let’s just redesign the binding pocket simultaneously with the scaffold 
 
In this section, we will redesign the protein binding interface while simultaneously designing a small 
molecule. For sake of the tutorial, we will continue to use the fragments employed in Runcie et al., 2018.  
 
First, we will make a new resfile to define the allowed residue identities at each position in the pocket. 
This has already been done for you and should look like this: 
 
## Sample BRD2 BD2 conserved L383 (41 in Rosetta numbering); the first 

residue in the PIKAA list corresponds to native 

NATAA 

USE_INPUT_SC 

start 

28 A PIKAA WFYLV 

30 A PIKAA FYWLV 

34 A PIKAA VLA 

39 A PIKAA LVA 

41 A PIKAA LVA 

44 A PIKAA YFWLV 

86 A PIKAA YFWLV 

87 A PIKAA NQDES 

83 A PIKAA CMS 

91 A PIKAA HNQ 

93 A PIKAA VLA 

96 A PIKAA MSC 

 
Visualize these residues in PyMOL. Note that they are interface residues with our ligand scaffold. 
 
To allow more sequence diversity during design, we will combine sampling backbone and sidechain de-
grees of freedom. We will optimize the sequence in a short 100 iteration Monte Carlo – Metropolis 
mover. 
 
<Backrub name="backrub"/> 

<PackRotamersMover name="mutate" scorefxn="hard_rep" nloop="5" 

task_operations="ifcl,rrf,fix_notinterface"/> 

 

<ParsedProtocol name="pseudo_coupled_moves"> 

<Add mover_name="backrub"/> 

<Add mover_name="mutate"/> 

</ParsedProtocol> 

 

<GenericMonteCarlo name="run_pcm" mover_name="pseudo_coupled_moves" 

trials="100" sample_type="low" filter_name="ifscore" 

progress_file="%%progress_file%%.pseudo_coupled_moves.log" 

temperature="0.593" drift="1" recover_low="1" reset_baselines="0" 

adaptive_movers="0" preapply="0" /> 

 
The combination of backrub and rotamer sampling is inspired by work in the Kortemme lab4. They found 
that evaluating backbone and sidechain perturbations together as a single MCM improves redesign at 



protein-ligand interfaces. I named our combined mover “pseudo_coupled_moves” to reflect that 
(and the “pseudo” because the CoupledMoves mover and application are a bit more involved than that).  
 
Recall from the BCL-Rosetta integration talks that when the BCL passes a chemically perturbed small 
molecule back to the Rosetta pose, it saves conformers of the new molecule as rotamers. Specifically, it 
restricts conformer sampling to only the chemically perturbed atom dihedrals. Thus, only the “new” 
parts of the molecule are sampled. Movement in the rotation/translation of the ligand with respect to 
the molecule occurs in subsequent minimization and/or relaxing of the complex.   
 
To prove to yourself that the MCM sampling will not rotate or translate the ligand, you can modify the 
downstream protocol to end after the MCM step so that you can visualize the output in PyMOL (not 
shown here).  
 
Now that we have our new resfile and our sequence redesign movers, we need to make our ligand de-
sign movers. We will gently modify the movers we used in Part 2. 
 
<BCLFragmentMutateMover name="add_medchem_bump_r1"  

ligand_chain="X"  

object_data_label="AddMedChem( 

ov_shuffle_h=false,ov_reverse=false, 

medchem_library=%%bump_r1%%,  

druglikeness_type=None, 

mutable_atoms=0)" 

/> 

 
<BCLFragmentMutateMover name="add_medchem_bump_r2"  

ligand_chain="X"  

object_data_label="AddMedChem( 

ov_shuffle_h=false,ov_reverse=false, 

medchem_library=%%bump_r2%%,  

druglikeness_type=None, 

mutable_atoms=0)" 

/> 

 
<BCLFragmentMutateMover name="add_medchem_methoxy_scan"  

ligand_chain="X"  

object_data_label="AddMedChem( 

ov_shuffle_h=false,ov_reverse=false, 

medchem_library=%%methoxy_scan_frag%%,  

druglikeness_type=None, 

mutable_atoms=16 17)" 

/> 

 
In addition, we will change our input shell script so that we randomly choose fragments from our input 
SD files instead of using SDFs of only one fragment each. 
  



 
 
$ROSETTA \ 

-parser:protocol $XML \ 

-in:file:s "$PROTEIN $LIGAND" \ 

-parser:script_vars prefix="${PREFIX}" \ 

-parser:script_vars resfile=${RESFILE} \ 

-parser:script_vars methoxy_res=${METHOXY_RES} \ 

-parser:script_vars bump_r1=${BUMP_R1} \ 

-parser:script_vars bump_r2=${BUMP_R2} \ 

-parser:script_vars \ 

methoxy_scan_frag=Tutorial_6/methoxy_scan_fragment.sdf \ 

-parser:script_vars progress_file="${PREFIX}.gmc.log" \ 

-extra_res_fa ${PARAMS} \ 

-out:prefix $PREFIX \ 

-out:pdb_gz true \ 

-nstruct 10 \ 

-in:file:fullatom \ 

-restore_pre_talaris_2013_behavior \ 

-score:weights ligand \ 

-ignore_zero_occupancy false \ 

-linmem_ig 10 #> ${PREFIX}.log 

 
Finally, we need to update our run protocols to reflect the changes in our sequence design strategy. 
 
<ParsedProtocol name="run_a" mode="sequence"> 

<Add mover_name="min_cycle_soft"/> 

<Add mover_name="min_cycle_hard"/> 

<Add mover_name="add_medchem_methoxy_scan"/> 

<Add mover_name="add_medchem_bump_r2"/> 

<Add mover_name="add_medchem_bump_r1"/> 

<Add mover_name="min_cycle_soft"/> 

<Add mover_name="min_cycle_hard"/> 

<Add mover_name="run_pcm"/> 

<Add mover_name="relax_cycle"/> 

</ParsedProtocol> 

 
Notice that now we perform an initial minimization of our scaffold, we run design on the ligand, mini-
mize again to remove obvious penalties, and then perform MCM sequence optimization before ending 
with a relax. Similarly, we need to modify run_b. I also added a run_c, which is effectively a control 
sequence design on the scaffold.  
 
Take a moment to make sure you understand how the contents of the submission script and the XML 
script match together. If you need help understanding anything, please let one of us help. 
 
Once you are confident in the functionality of your scrip, run the pocket design to create 10 quick de-
signs: 
 
 



bash scripts/ChemoGeneticsDesign.gmc.sh \ 

scripts/ChemoGeneticsDesign.gmc.xml BRD2.pdb XYZ.pdb XYZ.params \ 

resfiles/pocket.resfile output/GMC_POCKET_ > output/GMC_POCKET_.log & 

 
Look at a few of your best scoring models. Which protein-ligand interface residues are mutated? Did res-
idue L383 mutate? If so, did co-mutation with other residues change the preference of L383X for a par-
ticular bump modification on the ligand? Are there any residues that did not impart a beneficial change 
in ligand binding energy? If you are unsure, feel free to create more designs. 
 
 
Here are a couple of my designs: 
 

 
Figure 4. Illustration of a couple example in silico chemogenetics designs.  

 
Try running the design again, but this time set up your simulation to sample different stereoisomers. 
Hint: Look at Tutorial 5 Part 3. 
 
I encourage you to try new designs – expand the residue types available at each mutable residue posi-
tion, use different BCLFragmentMutateInterface ligand mutates, etc. Good luck and have fun! 

 
Congratulations! You have completed Tutorial 6. 
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