Quick-start guide to protein-ligand docking using Rosetta 3.1

This is one of a series of tutorials designed to get you started with protein/ligand docking using Rosetta 3.1. It
was produced to accompany Kaufmann et. al. (2010) Biochemistry, and the latest version can be found at
http://meilerlab.org/. The purpose of ligand docking is to predict the structure of a protein/ligand complex, given
the structures of the protein and the ligand separately. The RosettalLigand docking process randomly selects an
initial position for the ligand that doesn't overlap the protein. Next the structure is refined through small
movements of the ligand and sampling of side chain rotamers within the binding pocket. Small adjustments in the
ligand torsion angles and backbone @/ angles near the ligand further refine the docked model. The algorithm is
described in Davis and Baker (2009) J Mol Biol 385, 381-92.

Steps to execute the docking run

1. The Rosetta suite is available for download from http://www.rosettacommons.org/. You will want to
become familiar with the documentation that can be found in the /manual/ subdirectory, as well as the
online Rosetta 3 User Manual:
http://www.rosettacommons.org/manuals/rosetta3_user_guide/app_ligand_docking.html

2. Prepare the small molecule for docking. Generate a .mol, .sdf, or .mol2 file describing the 3D geometry of
the small molecule. Use /src/python/apps/public/molfile_2_params.py to create a pdb file and a “.params”
file describing the chemistry of the small molecule. Type molfile_2_params.py --help for more
information. Append the small molecule PDB to the end of the protein PDB. At this point you can either
place the small molecule into the putative binding pocket manually, using Pymol, or specify the X,Y,Z
starting coordinates for the small molecule in a flags file.

3. Prepare the protein receptor for docking. Only sidechains near the initial ligand position are repacked
during docking, to save time. This means *all* sidechains should be repacked before docking, so that any
pre-existing clashes (according to Rosetta's energy function) can be resolved. Otherwise, a ligand placed
near the clashing residues will allow them to repack and thus gain a large energy bonus that does not
accurately reflect its binding affinity in that position. A program 1igand_rpkmin is provided for this
purpose; one should use the same -ex# flags as will be used during docking:

~/mini/bin/ligand_rpkmin.linuxgccrelease -database ~/rosetta3_database/ -exl -ex2
-exlaro -extrachi_cutoff 1 -no_optH false -flip HNQ -docking:ligand:old_estat
-docking:ligand:soft_rep -nstruct 10 -s 7cpa.pdb

The prepared structure labeled 7cpa_7cpa_input.pdb is found in the /ligand_docking/ directory. The small
molecule has been placed in the putative binding site for this receptor.

4. If the native structure of your protein is already known, you can optionally provide it for benchmarking
purposes. If provided, an RMSD between the native and predicted structures will be calculated. The
Migand_docking directory contains 7cpa_7cpa_native.pdb. This file has no header and contains no solvent
and only heteroatoms of the docked ligand.

5. Create a flags file to specify the parameters Rosetta will use during docking, including the location and
format of input and output files, and options that specify details of the algorithm. There is a sample flags file
in the /ligand_docking/ directory included with this tutorial. It is worth reading the file in a text editor



6.

becuase it is well-commented and contains pointers to more documentation. The parameters of the run can
be changed by editing this file.
Conduct the docking run:

ligand_dock.linuxgccrelease @flags > ligand_dock.log

Analysis

1.

Examine the output files generated during this docking run. This includes the log file and the silent.out
file. The silent file is in a format unique to Rosetta, which minimizes file size by only recording
differences between decoys and a reference structure.

Use the extract_atomtree_diffs program to create PDBs from the silent file:

./rosetta_source/bin/extract_atomtree diffs.linuxgccrelease -database
~/rosetta_database -extra res_ fa input/lt3r.params -s silent.out

Load some of the decoys into your favorite molecular visualization program (Chimera, PyYMOL, etc) and
compare them with the native carboxypeptidase complexe (7cpa_7cpa_native.pdb).

The output structures can be ranked by the Rosetta energy score, where the lowest energy indicates the
best structure. The Rosetta scores can be found in both the silent.out file, and at the end of the output PDB
files. A common ranking approach is to take the top 5% of decoys by total energy, and then ranking the
remaining decoys by interaction energy (“interface_delta”). A script called best_iface.py has been written
to do just this. Use the help option for more information:

./rosetta_source/src/apps/public/ligand_docking/best_ iface.py --help

Another method for analyzing the typically thousands of models produced by a Rosetta run is to cluster
them by structural similarity, with the idea that the deepest (native) energy well is frequently the widest.
Therefore the largest cluster should correlate with the most native-like structure. Rosetta can perform
clustering analysis (see http://www.rosettacommons.org/manuals/rosetta3_user_guide/app_cluster.html)
and the final selection of the best structure frequently involves a combination of clustering and energy
score ranking.



