Protein Design

Gustavo Araiza Rosetta Workshop December 2022

Protein Design is the Inverse Protein Folding Problem

Given a protein fold – which primary sequence(s) can fold into it?

Protein Design Uses the Rosetta Energy Function and Local Rotamer Libraries

Simulated Annealing Monte Carlo optimization

Iterative Optimization of Sequence and Conformation in Rosetta

Single-state design

Also known as redesign

for antibodies: computational affinity maturation

Goal: take an existing antibody-antigen complex and optimize the antibody sequence for tighter binding

Single-state design protocol overview

Run FastRelax

FastRelax is designed to optimize the protein backbone/side chains to model at an energy minimum

Helps relieve clashes that may introduce artifacts into design

Benchmarks show as little as 1 Å backbone movement can completely change sampled sequences

-constrain_relax_to_start_coords keeps things close to inputs

Combs, et al, Nat. Prot. 2013

Please open

protein_design/single_state_design/input_files/design.xml

Where should you start looking?

```
<PROTOCOLS>
Run the design protocol
        <Add mover="design" />
Calculate interface metrics for the final sequence
        <Add mover="analyze" />
```

</PROTOCOLS>

Design and repack residues based on resfile
<ReadResfile name="rrf" filename="4HKX.resfile"/>

Do only design the residues specified below (the interface)

Free sequence design on heavy and light chain interface residues

Repack the antigen, do not mutate

Autogenerate resfile: Use the python script protein_design/scripts/define_interface.py

Interface: any atom within a cutoff (default 5 Å) of any atom in the opposing chain.

• Total score: score of the entire complex

• **Binding energy:** difference in energy between the bound and unbound partners

• **Binding density:** Binding energy divided by the buried surface area. Prevents a low binding energy by increasing buried surface area.

<InterfaceAnalyzerMover name="analyze" scorefxn="REF2015"
packstat="0" pack_input="0" pack_separated="1"
fixedchains="H,L" />

- packstat: activates packstat calculation (packing statistics, Rosetta holes); can be slow so it defaults to off
- fixedchains: comma-delimited list of chain ids to define a group in the interface.
- pack_separated: repack the exposed interfaces when calculating binding energy? Usually a good idea.
- pack_input: prepack before separating chains when calculating binding energy? Useful if these are non-Rosetta inputs

Useful to quickly see which residues are being designed, and what amino acids are being put there

Made by WebLogo application through protein_design/scripts/design_analysis.py

http://weblogo.berkeley.edu/

Create Sequence Inspect best Logo sequences Use the python script located in protein_design/scripts/PerResidueEnergies.py

Plots relative per residue energies. (input pose – design pose) Values smaller than zero indicate improvements relative to the input pose

Red: Mutations

Create Sequence Inspect best Logo sequences

- Position specific score changes for each Rosetta scoring term
- REF 2015 scoring terms:
- The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design Alford et al (2017)
- Made by supplementary script through

protein_design/scripts/PerResidueEnergies.p y

Multistate design

Multistate design: Optimize ONE sequence for low energy in MULTIPLE structures (states)

Redesign an antibody to recognize multiple targets

Single-state design protocol overview

REstrained CONvergence in MSD (RECON)

Sevy, A. M., Jacobs, T. M., Crowe, J. E. & Meiler, J. *PLoS Comput. Biol.* **11**, e1004300 (2015).

Create XML file

Please open
protein_design/multi_state_design/input_files/design.xml

<PROTOCOLS>

Run four rounds of design <Add mover=msd1 /> <Add mover=msd2 /> <Add mover=msd3 /> <Add mover=msd4 />

Multiple design operations with gradually forcing the design to one consensus sequence

• Differ in constraint weight

Find a consensus sequence <Add mover=finish /> <------

Agree on the final consensus sequence (if yet unclear)

Calculate interface metrics <**Add** mover=analyze /> </PROTOCOLS>

REstrained CONvergence in MSD (RECON)

Sevy, A. M., Jacobs, T. M., Crowe, J. E. & Meiler, J. *PLoS Comput. Biol.* **11**, e1004300 (2015).

	Create XML file	Create resfile
State 1	State 2	(State 3)
NATRO start 30 H ALLAA 31 H ALLAA 152 L ALLAA 155 L ALLAA	NATRO start	Designed residues must match 1-to-1 but structurally, not numerically
 332 A NATAA 334 A NATAA	 332 A NATAA 333 A NATAA 334 A NATAA	 States can differ in the number of residues being repacked

Rosetta Protein Design Applications

De Novo Design of a Novel Fold

Top7 "back-of-the envelope" drawn topology not found in the PDB at time of design

Iterative fixed backbone design + backbone perturbations

Kuhlman, B. *et al.* (2003). Design of a novel globular protein fold with atomic-level accuracy. Science *302*, 1364–1368.

Atomic Level Accuracy of Design (blue) to X-ray structure (red)

Α в G85 С Kuhlman, B. et al. (2003). Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368.

Design of Protein-Ligand Interfaces

RosettaMatch to identify stable backbone

Sequence Design:

Round 1 = maximize binding affinity for ligand

Round 2 = protein stabilization

Computational model = grey X-ray structure = purple

Tinberg, C.E., Khare, S.D., Dou, J., Doyle, L., Nelson, J.W., Schena, A., Jankowski, W., Kalodimos, C.G., Johnsson, K., Stoddard, B.L., Baker, D. (2013). Computational design of ligand-binding proteins with high affinity and selectivity. Nature *501* 212-216

Additional Design Applications

•Novel Enzyme Design – RosettaMatch and RosettaDesign

Siegel, J.B. *et al.* (2010). Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science *329*, 309–313

•Novel Protein Therapeutic Design

Fleishman, S.J. *et al.* (2011). Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science *332*, 816–821.

Design of a thermally stabilized enzyme

Korkegian, A., Black, M.E., Baker, D., and Stoddard, B.L. (2005). Computational thermostabilization of an enzyme. Science *308*, 857–860.

•Design of self-assembling proteins as nanomaterials

King, N.P., Sheffler, W., Sawaya, M.R., Vollmar, B.S., Sumida, J.P., Andre, I., Gonen, T., Yeates, T.O., Baker, D. (2012). Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. Science *336* 1171-1174

Additional Design Applications

•Design of symmetric superfolds to understand protein folding evolution

Fortenberry, C. *et al.* (2011). Exploring symmetry as an avenue to the computational design of large protein domains. J. Am. Chem. Soc. *133*, 18026–18029.

Rational epitope design

Wu, X., et al. (2010). Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science *329*, 856–861.

Rational vaccine design

Jardine, J., et al. (2013). Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science.