Machine Learning in Rosetta

Vv

VANDERBILT
UNIVERSITY

Presented by: Gustavo Araiza
Adapted from: Cristina Elisa Martina
Rosetta Workshop 2024
Meiler Lab



Revolution in Structural Biology:

FOLDING

'V (Art from Ruth Kellner)




Protein design with ML.:

INVERST TOLDING

'V (Art from Ruth Kellner)
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What is the best sequence to:

fold into this protein scaffold?
- new functions
- new shapes (de novo design)

increase protein stability?
- half-life
- thermostability
- crystallizability
- protein yields

increase binding to X?
- protein-protein
- ligand-protein
- supramolecular assemblies

increase enzymatic activity?
- activity
- specificity

V (Bale et al. 2016)



Computational tools for protein design:

Structure-based methods (e.g. Rosetta):
- Starting structure (experimental or model)
- Sampling component

- Scoring component

Machine Learning methods (e.g. ProteinMPNN):
- Large dataset for training

- Starting sequences, structures or both

- Very fast

- More accurate
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General info on ML:

Image
St.ructure Classification
Discovery Feature & Customer
@ Elicitation Fraud ® Retention

Meaningful Detection ®

compression

DIMENSIONALLY . .
. REDUCTION CLASSIFICATION ® Diagnostics
Big data

Visualisation

® Forecasting

Recommended UNSUPERVISED SUPERVISED
Systems LEARNING LEARNING ® Predictions

CLUSTERING REGRESSION

Targetted MACHINE ® Process

Marketing Optimization

LEARNING
P o
Customer New Insights
Segmentation

REINFORCEMNET
. LEARNING

Real-Time Decisions ® | ® Robot Navigation
Game Al ® e @® Skill Aquisition
o
Learning Tasks

V Image source:



http://www.cognub.com/index.php/cognitive-platform/

Supervised learning:

Cat Training set labeled!

We define what is a cat and
what is a dog in the training
set.




Supervised learning:

Test case

Training set labeled!

We define in the training set
what is cat and what is dog.

The model will learn from the
dataset and predict correctly
with out testing case.

DOG




Unsupervised learning:

Training set NOT
labeled!




Unsupervised learning:

Training set NOT
labeled!

Test case We have a large dataset without
W L= labes. The model will learn and
cluster from the dataset and
predict correctly.

» o~
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Unsupervised learning:

Training set is NOT
labeled!

We have a large dataset without
labels. The model will learn and
cluster from the dataset and
predict correctly.
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How machines learn:

Training/validation data-set

The data-set is divided into three
groups:

Training data-set (80%)
- Trains the model (learning)

Validation (10%)
- Used to benchmark during
learning
- Enables ‘fine-tuning’

Testing data-set (10%)
- used to evaluate the
performances with unseen
data after learning
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How machines learn:

Training data-set
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How machines learn:

Training data-set

Accuracy 32%
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How machines learn:

Training data-set

/ Accuracy 32%

Loss = Real - Predicted

If Loss = 0, the prediction is perfect.
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How machines learn:

Training data-set

Back-propagation is how the
model learns and improves its
performance.

\ / Accuracy 32%

Vv
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How machines learn:

Training data-set Output

\ / Accuracy 49%

Back-propagation is how the
model learns and improves its
performance.
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How machines learn:

Training data-set Output

\ / Accuracy 63%

Back-propagation is how the
model learns and improves its
performance.
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How machines learn:

Training data-set Output
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/ Accuracy 70%

Back-propagation is how the
model learns and improves its
performance.
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How machines learn:

Training data-set Output

n m
\ / Accuracy 79%

—

Back-propagation is how the
model learns and improves its
performance.

Vv
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How machines learn:

Training data-set Output

A
£ 7|
\ / Accuracy 98%

Back-propagation is how the
model learns and improves its
performance.
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How machines learn:

Testing data-set

Output

—En

Accuracy 95%

%G
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Today’s ML methods:

ProteinMPNN

« Dauparas, J. et al. Robust deep learning based protein sequence design using ProteinMPNN.
2022.06.03.494563 Preprint at https://doi.org/10.1101/2022.06.03.494563 (2022).

MIE-ST

. Yang, K. K., Zanichelli, N. & Yeh, H. Masked inverse folding with sequence transfer for
protein representation learning. Protein Engineering, Design and Selection 36, gzad015
(2022).

ESM

« Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning
to 250 million protein sequences. Proceedings of the National Academy of Sciences 118,
e2016239118 (2021).

« Rao, R. M. et al. MSA Transformer. in Proceedings of the 38th International Conference on
Machine Learning 8844—-8856 (PMLR, 2021).

« Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language
model. Science 379, 1123-1130 (2023).
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ProteinMPNN (Message Passing Neural
Network):

Trained on protein structures from RCSB-PDB:
- 19,700 single-chain protein structures
- Further trained on clustered high-res multichain structures
Predict probabilities of each natural aa for each position
Use probabilities to design sequences
Tested in silico:
- 690 monomers
- 732 homomers
- 98 heteromers

Tested experimentally
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ProteinMPNN:
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Y ProteinMPNN
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(Dauparas et al., 2022)



ProteinMPNN, inputs:

A Chain A

vt

Chain B

Vv

Input: protein
backbone
coordinates

o ] = -
Cb distances

Zeros

RCSB-PDB database

No evolutionary information!

Distances between N, Ca, C, O
and virtual C[3 are encoded using
graph theory:

- Nodes (atoms)
- Edges (distances)

(Dauparas et al., 2022)
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ProteinMPNN, the MPNN:

Input: protein
backbone
coordinates
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(Dauparas et al., 2022)
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ProteinMPNN,

Probabilities

lterative
decoding

Sample

Y
Sequence

Output: protein
sequence

the outputs:

ProteinMPNN outputs
re-designed sequences,
not structures!

This means that you have
predict a designed
structure with an
alternative method (AF,
Rosetta)

(Dauparas et al., 2022)
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ProteinMPNN, the outputs:

—

Probabilities

lterative
decoding

Sample

Y
Sequence

Output: protein
sequence

ProteinMPNN in Rosetta takes
the probabilities as outputs,
and uses it for designing the

structure directly!

(Dauparas et al., 2022)
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ProteinMPNN, performance:
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(Dauparas et al., 2022)
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ProteinMPNN, performance:
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ProteinMPNN, performance:

D
Crystal structure
Design model
90°
Increased
crystallizability

(Dauparas et al., 2022) 32



ProteinMPNN, perform
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MIEF-ST (Masked Inverse Folding with
Sequence Transfer):

Pre-trained on both protein structures and sequences:
- 19700 protein structures from RCSB-PDB
- 42 M sequences from UniRef50
- sequences are partially masked
- model must predict masked residues
Training for downstream task
- trained on single mutants and predicts multiple mutants
- predict experimental measurements
Tested in silico on small and large data-sets:
- Deep mutational scans
- Enzymatic activity
- Stability
- Binding

Vv
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Masking protein sequences in ML:

d N\
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MIF-ST:

a (structure-conditioned) MLM pretraining
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Vv

(Yang et al., 2023)
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MIF-ST:

L CARP MIF MIF-ST

®®®T®®® ®®®T®®® ®®®T®®®

ré e
[ CNN J GNN J GNN J
T 1 1 1
@ ® @ @ ® @ distances ( distances ] [ CNN ]
dihedral angles Sihedral angles
mask + corrupt T
T ®®®T®®® ®®®T®®®
UniRef50 (42M sequences) CATH (19k structures CATH (19k structures
and sequences) and sequences)

CNN = Convolutional Neural Network
(ordered data, N to C term of sequence)

GNN = Graph Neural Network
(unordered data, atoms with spatial component)

& (Yang et al., 2023)



MIF-ST, performance:

Regime Model Parameters Perplexity Recovery
Sequence only CARP-640M 640M 7.06 40.5%
Sequence & structure MIF-4 3.4M 4.95 49.9%
MIF-8 6.8M 5.00 46.7%
GVPMIF 3.5M 4.68 51.2%
+Sequence transfer MIF-ST 3.4M 4.08 55.6%
—UniRef50 pretraining MIF-ST 3.4M 5.70 45.4%
Perplexity: Sequence Recovery:
Model’s uncertainty in How well the model
prediction (lower is recovers native sequences.

better) (higher is better)

& (Yang et al., 2023)
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MIF-ST, performance

Predictions on DMS datasets
MIF-ST is outperforming in many cases.
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ESM (Evolutionary Scale Modeling):

Trained on protein sequences:
- 250 M sequences from UniParc
- Also using masking techniques
Evaluated on sequences from UniRef:
- Low-diversity data-set with UniRef100
- High-diversity sparse data-set with UniRef50 representative
- High-diversity dense data-set with UniRef50 clusters
Tested in silico to predict:
- Physio-chemical residue properties
- Biological variation
- Protein homology

- Secondary and tertiary structure (Lin et al., 2023)

- Effects of mutations

Experimental validation (de novo design - BioRvix) (Verkuil et al., 2022)

Vv
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ESM, performance:

Biological property
c ® Negatively charged
B Positively charged

M
e S b @ Hydrophobic

T *V oL &= Aromatic

xD eN +F +W @ Paolar

xE
+Y
mH Unique

Size
mR * Small (<120 Da)
® Medium (120-150 Da)

o Large (=150 Da)

Cluster amino acids
by properties

& (Rives et al., 2021)



ESM, performance:

A

Transformer (trained)

Transformer (untrained)

Sequence representations (t-SNE)

Unigram

2@ oc

bc
d

Transformer (trained)

Clusters genes by homology and
function

Transformer (untrained)

Sequence representations (PCA)

|

Unigram

(Rives et al., 2021)
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ESM, performance:

Predict secondary

With pre-training No pre-training ' StI'UCtureS
8-class Acc: 70.6% 8-Class Acc: 36.6%
dint4a_ (Phosphoglycerate mutase-like fold) .
Helices
Strands
Loops

With pre-training No pre-training
8-class Acc: 82.4% 8-class Acc: 32.4%

(Rives et al., 2021)
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ESM, performance:

Position: 8

0.0 M - Acidic

DEHKRAFILMVWYNQSTGP ™ Basic
e = Hydrophobic
Position: 103 e ol
= Special

Ground Truth Structure - 6W3W
B Position 8 (Surface)
B Position 103 (Core)

DEHKRAFILMVWYNQSTGP

Probabilities!

(Verkuil et al., 2022) 44



ESM, performance:

Comparison
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ESM, performance:
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ML in Rosetta:

The hero here:

Moritz Ertelt
PhD student in Meiler lab at
Leipzig University

Contact:
moritz.ertelt@uni-leipzig.de
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ML in Rosetta:

Why integrating protein ML methods in Rosetta?

D s b

s i DT
P T R T e e
- R ";’3"

RSSO T A
;b' \J '0-

Biomineral surface
Loop modeling docking

R—2

N
Modeling with
experimental data

Non-canonical
chemistries

Antibodies Membrane proteins RNA/DNA

Carbohydrates

Peptides

(Koehler-Lehman et al. 2020) 48



ML in Rosetta:

Why integrating protein ML methods in Rosetta?

+ Feature calculation is fast in C++
+ No knowledge of Python needed for RosettaScripts

+ Makes it easy to combine ML with Rosetta elements

+ No need to reinvent the wheel for sampling, scoring, etc.

+ Provides an established testing framework

49



ML in Rosetta, how:

o Link Rosetta against PyTorch/TensorFlow
« Re-create feature calculation & inference in Rosetta
« Standardize output in Rosetta

o Create tools around the standardized output in Rosetta

./scons.py -] bin mode=release extras=pytorch,tensorflow

50



ML in Rosetta Design:

Input Inference Output

ACDEFGHI KLMNPORSTVWY X

4 Models )

ProteinMPNN
e —_—
MIF-ST
\ ESM j
Sequence and/or Position specific

structure probability matrix

(PSPM)

/

Referred in the tutorial as “Probabilities”




ML in Rosetta Design, design tools:

Constrain the sampling with
info from the probabilities.
/ Sampling Mutations in Rosetta: \ / P

FavorSequenceProfile

Restrict sampling to aa at

RestrictA AsFromProbabilities " least as likely as the current

SampleSequenceFromProbabilities \ one from probabilities.

Sample aa from
probabilities.

Vv ;



ML in Rosetta Design, design tools:

<TASKOPERATIONS>
<ReadResfile name="rrf" filename="./resfile.resfile" />

</ TASKOPERATIONS>

<SIMPLE_METRICS>
<PerResidueEsmProbabilitiesMetric name="esm" residue_selector="res"
model="esm2_t33_650M_UR50D" />

</SIMPLE_METRICS>

<MOVERS>

<SampleSequenceFromProbabilities name="sample" metric="esm" pos_temp="0.1"
aa_temp="0.1" prob_cutoff="0.1" delta_prob_cutoff="0.0" max_mutations="10"
task_operations="rrf" use_cached_data="true" />

</MOVERS>

- Sample 10 positions
(max mutations="10")

- Sample aa with p>0.1
(prob cutoff="0.1")

- At least as likely as the current aa
(delta prob cutoff=70.0")

Vv
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ML in Rosetta Design, analysis tools:

<SIMPLE_METRICS>
<ProteinMPNNProbabilitiesMetric name="prediction" />
<CurrentProbabilityMetric name="current" metric="prediction" />

</SIMPLE_METRICS>

The probabilities for the sequence are saved
in the b-factor column of the pdb and can be
easily visualized with pymol/chimera.
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ML in Rosetta Design, analysis tools:

Returns the probabilities for
the sequence in the pose.

/ Analysis in Rosetta: \ Average probabilities
- : (i.e. from ProteinMPNN
CurrentProbabilityMetric / Tt SN,

AverageProbabilitiesMetric

ProbabilityConservationMetric — Calculate conservation for
each position from
probabilities. Ranges from 0
(no conservation) to 1 (fully
conserved).

\BestMutationsFromProbabilitiesMetric/

Return the most likely
mutation(s) for a given
position.

Vv =



The tutorial:

Monomer

Dimer

AN

™

Input Preparation:
- Download the pdbs

- Clean the pdbs
- Repack the structure

Calculate probabilities:

- ProteinMPNN, MIF-ST, ESM (independently)
- Get current probability

- Get best mutations

Design:

- Use probabilities to guide design
- Use probabilities to guide scoring
- Design interfaces
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Bibliography - ML in Rosetta:

« Yang, K. K., Zanichelli, N. & Yeh, H. Masked inverse folding with sequence transfer for
protein representation learning. Protein Engineering, Design and Selection 36, gzad015 (2023).

« Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language
model. Science 379, 1123-1130 (2023).

. Hie, B. L. et al. Efficient evolution of human antibodies from general protein language
models. Nat Biotechnol 1-9 (2023)

. Corso, G, Stark, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: Diffusion Steps, Twists, and
Turns for Molecular Docking. (2023).

« Verkuil, R. et al. Language models generalize beyond natural proteins. 2022.12.21.521521
(2022).

« Dauparas, ]. et al. Robust deep learning based protein sequence design using ProteinMPNN.
2022.06.03.494563 (2022).

« Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning
to 250 million protein sequences. Proceedings of the National Academy of Sciences 118,
€2016239118 (2021).

« Rao, R. M. et al. MSA Transformer. in Proceedings of the 38th International Conference on
Machine Learning 8844-8856 (PMLR, 2021).

o Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 1-11
(2021) doi:10.1038/s41586-021-03819-2.

« Sculley, D. et al. Machine Learning: The High-Interest Credit Card of Technical Debt.
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