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Revolution in Structural Biology:
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(Art from Ruth Kellner)



Protein design with ML:

3

(Art from Ruth Kellner)



What is the best sequence to:
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⚫ fold into this protein scaffold?
 - new functions
 - new shapes (de novo design)

⚫ increase protein stability?
 - half-life
 - thermostability
 - crystallizability
 - protein yields

⚫ increase binding to X?
 - protein-protein  
 - ligand-protein
 - supramolecular assemblies

⚫ increase enzymatic activity?
 - activity
 - specificity

(Bale et al. 2016)



Computational tools for protein design:
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Structure-based methods (e.g. Rosetta):

- Starting structure (experimental or model)

- Sampling component

- Scoring component

Machine Learning methods (e.g. ProteinMPNN):

- Large dataset for training

- Starting sequences, structures or both

- Very fast

- More accurate



General info on ML:
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Image source: http://www.cognub.com/index.php/cognitive-platform/

http://www.cognub.com/index.php/cognitive-platform/


Supervised learning:
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Cat Dog Cat

Cat Dog

Cat Dog Cat

Dog

Training set labeled!

We define what is a cat and 
what is a dog in the training 
set.



Supervised learning:
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Cat Dog Cat

Cat Dog

Cat Dog Cat

Dog

Training set labeled!

We define in the training set 
what is cat and what is dog.

The model will learn from the 
dataset and predict correctly 
with out testing case.

DOG

Test case



Unsupervised learning:
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Training set NOT 
labeled!



Unsupervised learning:
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Training set NOT 
labeled!

We have a large dataset without 
labes. The model will learn and 
cluster from the dataset and 
predict correctly.

Test case



Unsupervised learning:
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Training set is NOT 
labeled!

We have a large dataset without 
labels. The model will learn and 
cluster from the dataset and 
predict correctly.



How machines learn:
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The data-set is divided into three 
groups:

- Training data-set (80%)
- Trains the model (learning)

- Validation (10%)
- Used to benchmark during 

learning
- Enables ‘fine-tuning’

- Testing data-set (10%)
- used to evaluate the 

performances with unseen 
data after learning

Training/validation data-set

Testing data-set
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Training data-set

ML
Model

Output

How machines learn:
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Training data-set

ML
Model

Output

Accuracy 32%

How machines learn:
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Training data-set

ML
Model

Output

Accuracy 32%

Loss = Real - Predicted

If Loss = 0, the prediction is perfect.
Loss = 100

How machines learn:
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Training data-set

ML
Model

Output

Accuracy 32%

Back-propagation is how the 
model learns and improves its 

performance.
Loss = 100

How machines learn:
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Training data-set

ML
Model

Output

Accuracy 49%

Back-propagation is how the 
model learns and improves its 

performance.
Loss = 72

How machines learn:
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Training data-set

ML
Model

Output

Accuracy 63%

Loss = 37

How machines learn:

Back-propagation is how the 
model learns and improves its 

performance.
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Training data-set

ML
Model

Output

Accuracy 70%

Loss = 29

How machines learn:

Back-propagation is how the 
model learns and improves its 

performance.
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Training data-set

ML
Model

Output

Accuracy 79%

Loss = 19

How machines learn:

Back-propagation is how the 
model learns and improves its 

performance.
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Training data-set

ML
Model

Output

Accuracy 98%

Loss = 0.5

How machines learn:

Back-propagation is how the 
model learns and improves its 

performance.
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Testing data-set

ML
Model

Output

Accuracy 95%

How machines learn:



Today’s ML methods:
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ProteinMPNN
⚫ Dauparas, J. et al. Robust deep learning based protein sequence design using ProteinMPNN. 

2022.06.03.494563 Preprint at https://doi.org/10.1101/2022.06.03.494563 (2022).

MIF-ST
⚫ Yang, K. K., Zanichelli, N. & Yeh, H. Masked inverse folding with sequence transfer for 

protein representation learning. Protein Engineering, Design and Selection 36, gzad015 
(2022).

ESM
⚫ Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning 

to 250 million protein sequences. Proceedings of the National Academy of Sciences 118, 
e2016239118 (2021).

⚫ Rao, R. M. et al. MSA Transformer. in Proceedings of the 38th International Conference on 
Machine Learning 8844–8856 (PMLR, 2021).

⚫ Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language 
model. Science 379, 1123–1130 (2023).



ProteinMPNN (Message Passing Neural 
Network):
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Trained on protein structures from RCSB-PDB:

 - 19,700 single-chain protein structures

 - Further trained on clustered high-res multichain structures 

Predict probabilities of each natural aa for each position

Use probabilities to design sequences

Tested in silico:

 - 690 monomers

 - 732 homomers

 - 98 heteromers

Tested experimentally
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ProteinMPNN:

(Dauparas et al., 2022)



26(Dauparas et al., 2022)

ProteinMPNN, inputs:

RCSB-PDB database

No evolutionary information!

Distances between N, C⍺, C, O 
and virtual Cβ are encoded using 
graph theory:

- Nodes (atoms)

- Edges (distances)
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ProteinMPNN, the MPNN:

128 hidden dimensions
(here is where predictions happen)

(x3)(x3)

(Dauparas et al., 2022)
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ProteinMPNN, the outputs:

ProteinMPNN outputs 
re-designed sequences, 

not structures!

This means that you have 
predict a designed 
structure with an 

alternative method (AF, 
Rosetta)

(Dauparas et al., 2022)
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ProteinMPNN, the outputs:

ProteinMPNN in Rosetta takes 
the probabilities as outputs, 
and uses it for designing the 

structure directly!

(Dauparas et al., 2022)
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ProteinMPNN, performance:

Monomer design (N=408)

(Dauparas et al., 2022)
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Recovered 
solubility

Increased 
thermostability

ProteinMPNN, performance:

(Dauparas et al., 2022)



ProteinMPNN, performance:
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Increased 
crystallizability

(Dauparas et al., 2022)



ProteinMPNN, performance:
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Creates
new functions

(Dauparas et al., 2022)



MIF-ST (Masked Inverse Folding with 
Sequence Transfer):
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Pre-trained on both protein structures and sequences:

 - 19700 protein structures from RCSB-PDB

 - 42 M sequences from UniRef50

 - sequences are partially masked

 - model must predict masked residues

Training for downstream task

 - trained on single mutants and predicts multiple mutants

 - predict experimental measurements

Tested in silico on small and large data-sets:

 - Deep mutational scans

 - Enzymatic activity

 - Stability

 - Binding



Masking protein sequences in ML:
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ML
Model

Prediction: MEKVSD



MIF-ST:
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Pre-training
(structures, 

sequences, masking)

Training
(sequences, masking)

(Yang et al., 2023)



MIF-ST:
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CNN = Convolutional Neural Network 
(ordered data, N to C term of sequence)

GNN = Graph Neural Network
(unordered data, atoms with spatial component)

(Yang et al., 2023)



MIF-ST, performance:
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Perplexity:
Model’s uncertainty in 

prediction (lower is 
better)

Sequence Recovery:
How well the model 

recovers native sequences.
(higher is better)

(Yang et al., 2023)



MIF-ST, performance:
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Predictions on DMS datasets:
MIF-ST is outperforming in many cases.

(Yang et al., 2023)



ESM (Evolutionary Scale Modeling):
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Trained on protein sequences:

 - 250 M sequences from UniParc

 - Also using masking techniques

Evaluated on sequences from UniRef:

 - Low-diversity data-set with UniRef100

 - High-diversity sparse data-set with UniRef50 representative

 - High-diversity dense data-set with UniRef50 clusters

Tested in silico to predict:

 - Physio-chemical residue properties

 - Biological variation

 - Protein homology 

 - Secondary and tertiary structure

 - Effects of mutations

Experimental validation (de novo design - BioRvix)

(Lin et al., 2023)

(Verkuil et al., 2022)



ESM, performance:
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Cluster amino acids 
by properties

(Rives et al., 2021)



ESM, performance:
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Clusters genes by homology and 
function

(Rives et al., 2021)



ESM, performance:
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Predict secondary 
structures

Helices
Strands
Loops

(Rives et al., 2021)



ESM, performance:
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Probabilities!

(Verkuil et al., 2022)



ESM, performance:

45(Verkuil et al., 2022)



ESM, performance:

46(Verkuil et al., 2022)



ML in Rosetta:
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The hero here:

Moritz Ertelt
PhD student in Meiler lab at 
Leipzig University

Contact:
moritz.ertelt@uni-leipzig.de



ML in Rosetta:
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Why integrating protein ML methods in Rosetta?

(Koehler-Lehman et al. 2020)



ML in Rosetta:
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Why integrating protein ML methods in Rosetta?

+ Feature calculation is fast in C++

+ No knowledge of Python needed for RosettaScripts

+ Makes it easy to combine ML with Rosetta elements

+ No need to reinvent the wheel for sampling, scoring, etc.

+ Provides an established testing framework



ML in Rosetta, how:
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⚫ Link Rosetta against PyTorch/TensorFlow

⚫ Re-create feature calculation & inference in Rosetta

⚫ Standardize output in Rosetta

⚫ Create tools around the standardized output in Rosetta



ML in Rosetta Design:
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Input

Sequence and/or 
structure

Inference Output

Models

ProteinMPNN

MIF-ST

ESM

Position specific 
probability matrix 

(PSPM)

Referred in the tutorial as “Probabilities”



ML in Rosetta Design, design tools:
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Sampling Mutations in Rosetta:

FavorSequenceProfile

RestrictAAsFromProbabilities

SampleSequenceFromProbabilities

Constrain the sampling with 
info from the probabilities.

Restrict sampling to aa at 
least as likely as the current 

one from probabilities.

Sample aa from 
probabilities.



ML in Rosetta Design, design tools:
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- Sample 10 positions    
 (max_mutations=”10”)

- Sample aa with p>0.1   
 (prob_cutoff=”0.1”)

- At least as likely as the current aa 
 (delta_prob_cutoff=”0.0”)



ML in Rosetta Design, analysis tools:
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The probabilities for the sequence are saved 
in the b-factor column of the pdb and can be 
easily visualized with pymol/chimera.



ML in Rosetta Design, analysis tools:
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Analysis in Rosetta:

CurrentProbabilityMetric

AverageProbabilitiesMetric

ProbabilityConservationMetric

BestMutationsFromProbabilitiesMetric

Returns the probabilities for 
the sequence in the pose.

Average probabilities 
(i.e. from ProteinMPNN 

and ESM).

Calculate conservation for 
each position from 

probabilities. Ranges from 0 
(no conservation) to 1 (fully 

conserved).

Return the most likely 
mutation(s) for a given 

position.



The tutorial:
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Input Preparation:
- Download the pdbs
- Clean the pdbs
- Repack the structure

Calculate probabilities:
- ProteinMPNN, MIF-ST, ESM (independently)
- Get current probability
- Get best mutations

Design:
- Use probabilities to guide design
- Use probabilities to guide scoring
- Design interfaces

Monomer

Dimer



Bibliography - ML in  Rosetta:
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