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The (Inverse) Protein Folding Problem
Holy Grail of Comp. Structural Biology

Protein Folding Problem

@O r
Cg Sequence [———>| Structure
® s )

Inverse Folding Problem

= Given a protein’s AA sequence,
what is its 3-dimensional fold ,
and how does it get there?

=  Assume 100 conformations for
each amino acid in a 100 amino
acid protein = 1029 possible
conformations!

» Cyrus Levinthal’s paradox of
protein folding,1968.
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Rosetta: A Unified Framework for Tackling
Molecular Modeling
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The premier suite for
macremolecular modeling
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Collaboration

Structure prediction
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. 487 p. 545-74.

A. Leaver-Fay, et al.; "ROSETTA3: an object-oriented software suite ..."; Methods Enzymol; 2011; Vol
J. K. Leman, et al.; "Macromolecular modeling and design in Rosetta: recent methods and frameworks"; Nat Methods; 2020; Vol. 17 (7): p. 665-680.
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https://www.rosettacommons.org/software
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Peptide Bond Formation and Folding of
Protein Tertiary Structure

Amino acid (1) Amino acid (2) Amino acics w

Primary Protein structure
sequence of a chain of

animo acids
H
H A H
H H
Pleated sheet Alpha helix — Secondary Protein structure
H ‘ \ hydrogen bonding of the peptide
backbone causes the amino
acids to fold into a repeating
! ‘ pattern

Peptide bond H
H Pleated sheet Tertiary protein structure
- . three-dimensional folding
pattern of a protein due to side
H chain interactions
ﬁ Alpha helix

" g

Water
Quaternary protein structure
protein consisting of more
ﬂipE p‘ti d e than one amino acid chain
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Protein Folding is Driven by the
Minimization of Free Energy

~

Entropy Unfolded
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Thomas Splettstoesser (www.scistyle.com)




Protein Tertiary Structure is Tied to
Function
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Did AlphaFold “solve” the
Protein Folding Problem?

PROTEINFALTUNG VORHERSAGBAR?

Kiinstliche Intelligenz macht ernst im
Biolabor

VON JOACHIM MULLER-JUNG - AKTUALISIERT AM 01.12.2020 - 16:k2

Lebenswissenschaftler verneigen sich. Doch hat DeepMind mit seiner lernenden

Maschine ,AlphaFold“ wirklich ein Jahrzehnte altes Problem der Biologie gelost,

wie behauptet wird? Eine Umfrage unter unabhéngigen Experten.

www.meilerlab.org — recruiting graduate students and postdoctoral fellows — jens@meilerlab.org
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Critical Assessment of protein Structure
Prediction (CASP) — established 1994

» CASP is a community-wide, worldwide
experiment for protein structure prediction taking
place every two years since 1994. C

» CASP provides research groups with an
opportunity to objectively test their structure
prediction methods and delivers an independent
assessment of the state of the art in protein A—
structure modeling to the research community
and software users.

=  Even though the primary goal of CASP is to help
advance the methods of identifying protein S
three-dimensional structure from its amino acid
sequence many view the experiment more as a
“world championship” in this field of science. P

»  More than 100 research groups from all over the
world participate in CASP on a regular basis and
it is not uncommon for entire groups to suspend
their other research for months while they focus 1 4
on getting their servers ready for the experiment
and on performing the detailed predictions.
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Critical Assessment of protein Structure
Prediction (CASP) — established 1994

Global Distance Test — 90%+ is perfect >
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https://www.wevolver.com/article/deepmind-alphafold2-the-future-of-biology
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Critical Assessment of protein Structure
Prediction (CASP) — established 1994

A Critical Assessment of Structure Prediction
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Critical Assessment of protein Structure
Prediction (CASP) — established 1994

Critical Assessment of Structure Prediction
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Highly accurate protein structure
prediction with AlphaFold
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J. Jumper, et al,;
"Highly accurate
protein structure
prediction with
AlphaFold";
Nature; 2021;
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p. 583-589.
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AlphaFoldMania — The number of
research papers and preprints

Journal article m Preprint
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Molecular Architecture of the Human
Caveolin-1 Complex with AlphaFold2

J. C. Porta, B. Han, A. Gulsevin, J. Chung, Y. Peskova, S. Connolly, H. S. Mchaourab, J. Meiler, E. Karakas, A. K. Kenworthy
and M. D. Ohi; "Molecular architecture of the human caveolin-1 complex"; Science Advances; 2022; \Vol. p.

www.meilerlab.org — recruiting graduate students and postdoctoral fellows — jens@meilerlab.org 17




Molecular Architecture of the Human
Caveolin-1 Complex with AlphaFold2
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Molecular Architecture of the Human

Caveolin-1 Complex with AlphaFold2
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Sampling Alternative Conformational
States with AlphaFold2

A
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Figure 1. Alternative conformations of transporters and GPCRs can be predicted by
AF2. (A) Representative models of the transporter LAT1 in IF and OF conformations.
Experimental structures shown in gray and models shown in teal and orange.

D. Del Alamo, D. Sala, H. S. McHaourab and J. Meiler; "Sampling alternative conformational states of transporters and receptors
with AlphaFold2"; Elife; 2022; Vol. 11 p.
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AF2 Predicted Conformations for the
Adhesion GPCR ADGRG5/GPR114
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Integrating Limited Experimental Data:
NMR, EPR, MassSpec, cryo-EM, ...

Inward-open Occluded

Confidence (pTM)

0.75 0.80 0.85 0.90 0.95

D. Del Alamo, L. DeSousa, R. M. Nair, S. Rahman, J. Meiler and H. S. Mchaourab; "Integrated AlphaFold2 and DEER
investigation of the conformational dynamics of a pH-dependent APC antiporter"; Proc Natl Acad Sci U S A; 2022; Vol. 119 (34):
p. €2206129119
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AlphaFold Protein Structure Database
200 Million Predicted Protein Structures

out us EMBL-EBI

AlphaFold Protein Structure Database Home About FAQs Downloads

AlphaFold
Protein Structure Database

Developed by DeepMind and EMBL-EBI

Examples: Free fatty acid receptor 2 Al1g58602

Feedback on structure: Contact DeepMind

AlphaFold DB provides open access to over 200 million protein
structure predictions to accelerate scientific research.
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Since 1993(!) — Neural Networks for
Chemists J

Jure Zupan, Johann Gasteiger ,

Neural Networks ||
for Chemists T T
i

An Introduction

J. Meiler and R. Meusinger "Use of Neural Networks to Determine
Properties of Alkanes from their 13C-NMR Spectra" in Software -
Entwicklung in der Chemie; Gasteiger, J., Ed. Gesellschaft Deutscher
Chemiker: Frankfurt am Main; 1995; Vol. 10: p. 259-263.
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

» Teaching process of multi-layer neural network employing
backpropagation algorithm. To illustrate this process,
consider the three layer neural network with two inputs and
one output:

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler 25



24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

Each neuron is composed of two units. First unit adds products of weights
coefficients and input signals. The second unit realizes nonlinear function, called
neuron activation function. Signal e is summed weighted input signal, and y = f(e)
is output signal of nonlinear element. Signal y is also output signal of neuron:

X
1 W,
y
W
X, 2
X, W,
. o=x.W.+X. W non-linear y=f(e)
sznmmn?;g L1z 2’-— element 1 g
f(e)
X, W,

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler 26



24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

To teach the neural network we need training data set. The training data set consists of input signals (x;
and x, ) assigned with corresponding target (desired output) z. The network training is an iterative
process. In each iteration weights coefficients of nodes are modified using new data from training data
set. Modification is calculated using algorithm described below: Each teaching step starts with forcing
both input signals from training set. After this stage we can determine output signals values for each
neuron in each network layer. Pictures below illustrate how signal is propagating through the network,

Symbols w,,, represent weights of connections between network input x,, and neuron n in input layer.

Symbols y, represents output signal of neuron n.

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

To teach the neural network we need training data set. The training data set consists of input signals (x;
and x, ) assigned with corresponding target (desired output) z. The network training is an iterative
process. In each iteration weights coefficients of nodes are modified using new data from training data
set. Modification is calculated using algorithm described below: Each teaching step starts with forcing
both input signals from training set. After this stage we can determine output signals values for each
neuron in each network layer. Pictures below illustrate how signal is propagating through the network,
Symbols w,,, represent weights of connections between network input x,, and neuron n in input layer.
Symbols y, represents output signal of neuron n.

Y, = fz(“'(xl)}ﬂ + Weey2¥2)

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

To teach the neural network we need training data set. The training data set consists of input signals (x;
and x, ) assigned with corresponding target (desired output) z. The network training is an iterative
process. In each iteration weights coefficients of nodes are modified using new data from training data
set. Modification is calculated using algorithm described below: Each teaching step starts with forcing
both input signals from training set. After this stage we can determine output signals values for each
neuron in each network layer. Pictures below illustrate how signal is propagating through the network,
Symbols w,,, represent weights of connections between network input x,, and neuron n in input layer.
Symbols y, represents output signal of neuron n.

V3 = J@(“'{xn}"l + Wergya¥a)

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

= Propagation of signals through the hidden layer. Symbols w, , represent
weights of connections between output of neuron m and input of neuron n
in the next layer.

Vy = SaOWu v+ Wy vy + 103 75)

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

= Propagation of signals through the hidden layer. Symbols w, , represent
weights of connections between output of neuron m and input of neuron n
in the next layer.

Vs = fs (s 1) + 0551 + W55 15)

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler 31



24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

* Propagation of signals through the output layer.

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

* In the next algorithm step the output signal of the network y is compared
with the desired output value (the target), which is found in training data
set. The difference is called error signal d of output layer neuron.

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler 33



24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

» |tis impossible to compute error signal for internal neurons directly,
because output values of these neurons are unknown. The idea is to
propagate error signal d (computed in single teaching step) back to all
neurons, which output signals were input for discussed neuron.

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler 34



24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

» |tis impossible to compute error signal for internal neurons directly,
because output values of these neurons are unknown. The idea is to
propagate error signal d (computed in single teaching step) back to all
neurons, which output signals were input for discussed neuron.

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

The weights' coefficients w,, used to propagate errors back are equal to
this used during computing output value. Only the direction of data flow is
changed - signals are propagated from output to inputs one after the
other. This technique is used for all network layers. If propagated errors
came from few neurons they are added. The illustration is below:

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler 36



24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

The weights' coefficients w,, used to propagate errors back are equal to
this used during computing output value. Only the direction of data flow is
changed - signals are propagated from output to inputs one after the
other. This technique is used for all network layers. If propagated errors
came from few neurons they are added. The illustration is below:
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

The weights' coefficients w,, used to propagate errors back are equal to
this used during computing output value. Only the direction of data flow is
changed - signals are propagated from output to inputs one after the
other. This technique is used for all network layers. If propagated errors
came from few neurons they are added. The illustration is below:

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

= When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function (which
weights are modified).
df,(e)

W =W, 0, —————X
(x1 (et T 779 do 1

df,(e)

W' =W +no, ——x
(x )1 el 1O Jo 2

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

= When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function (which
weights are modified).
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—(?ZG (E) R
e

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

= When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function (which
weights are modified).

dfs(e) N
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http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

= When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified.
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http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html

© Jens Meiler
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

= When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified.
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http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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24 July 2024

Back Propagation of Errors is the most
popular Training Algorithm

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function (which
weights are modified).

df,(e)

b o J .
Wiyg = Wyg 770 o V4

ACH
e

N _ f o
Wisg=Wsg +1770 5

http://galaxy.agh.edu.pl/~vlsi/Al/backp_t_en/backprop.html
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The (Inverse) Protein Folding Problem
Holy Grail of Comp. Structural Biology

Protein Folding Problem

@O r
@%D Sequence [———>| Structure
® s )

Inverse Folding Problem

= Given a protein’s AA sequence, what is its 3-dimensional fold , and how
does it get there?

= Assume 100 conformations for each amino acid in a 100 amino acid
protein = 10299 possible conformations!

= Exhaustive sampling is impossible — e.g. earth is less than 10'° years old.
» Cyrus Levinthal’s paradox of protein folding,1968.
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Protein Folding using Lattice Models and
Grid Searches

= Arrange amino acids randomly on three-
dimensional grid

» Define a simplified energy function that measures
exposure (red=buried, blue exposed), etc.

=  Search arrangements using Monte Carlo or
Genetic algorithms

=  Works only for very small proteins (<50AA)

» Popularin earlier days of protein structure
prediction (1990-2000) for reduced computational
requirements

R. Unger and J. Moult; "Genetic algorithms for protein folding

simulations"; J Mol Biol; 1993; Vol. 231 (1): p. 75-81.

A. Kolinski and J. Skolnick; "Monte Carlo simulations of protein

folding. I. Lattice model and interaction scheme"; Proteins;

1994; Vol. 18 (4): p. 338-52.

A. Sali, E. Shakhnovich and M. Karplus; "Kinetics of protein

folding. A lattice model study of the requirements for folding to

the native state"; J Mol Biol; 1994; Vol. 235 (5): p. 1614-36.

K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D.

Thomas and H. S. Chan; "Principles of protein folding--a

perspective from simple exact models"; Protein Sci; 1995; Vol.
4 (4): p. 561-602.
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General Scheme of Protein Structure
Prediction

Protein Primary Sequence
MSA L2 PDB

Fold Recognition

A 4

De novo Modeling of BB Sequence Alignment

A 4

A 4 A 4

Structural Filters / Clustering Comparative Modeling of BB

[ |
v

Building SC coordinates
!

Tertiary Model Refinement
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PhD - Prediction of protein secondary
structure at better than 70% accuracy

first level: second level: third level: prediction
profile generation sequence 1o structure  siructure lo structure Jury decision winner take all
from a multiple in: profiles, in: output of first in: output of (given here N
sequence alignment out; units for level, out: o, B, L different networks for the N at
(here: B-lactamase: 3bla) helix (o), strand (8) out; arithmetic position 4)
and loop(L) average foro, B, L

protein DSSP aligned  number of

sequence  example: input
K.HK 1:K=.75, H=.25
EDAE 2:E=.5,D=2,A=2
FFFF
SAAS
QKKQ
LLLL
EEEE
KEKK
KQEK
FFYF
DDND
AARA
P RKKR
B LLLL
B GGGG

helix

N
§
&
T

238

Vi

8: K=.8,E=.2

R R R R AR R K A

,_
l 0000 @620

Q H D> Z <R A @mHE O 2 @R

B. Rost and C Séndéf; "Prediction of protein secondary structure at better than 70% accuracy"; J. Mol. Biol.; 1993; Vol. 232 (2):
p. 584-99; J. Meiler, A. Zeidler, F. Schmaschke and M. Muller; "Generation and evaluation of dimension-reduced amino acid
parameter representations by artificial neural networks"; Journal of Molecular Modeling; 2001; Vol. 7 (9): p. 360-369.
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BCL::Jufo9D >70% correct 9-state
prediction, >80% SS, >90% TM

tm C tr C solC tm S tr S solS tmH tr H sol H

1 tm_C 133 1.9 48 20 60 6.9
. tr.C 48 34 19 7.8

15.3
I sol_C 3.8 23.0 439 24 25 87 21 2.4 11.2

Ll
|_
< tmS 62 75 5.1
“  trSs 30 120 17 142 1.8
—
<
L
o

5
so S 37 62 111 7.0 49 559 40 42 31 1y tane

membrane
tm H 2.0 3.8 TR transition
’ B . . SOL solution
Il tr H 2.0 16.9
1|
T SO|_H 1.4 6.0 9.0 H helix
S strand
J. K. Leman, R. Mueller, M. Karakas, N. Woetzel and J. Meiler; "Simultaneous prediction of protein C coil

secondary structure and transmembrane spans"; Proteins; 2013; Vol. 81 (7): p. 1127-40.
g

www.meilerlab.org — recruiting graduate students and postdoctoral fellows — jens@meilerlab.org 49




Example 1: Succinate dehydrogenase
(1TNEK)

= Secondary structure [l helix = Trans-membrane
prediction J stand span identification

. coil

membrane
transition
solution

92% 81%
residues correct

50




Example 2: EspP autotransporter
beta-domain (2Q0OM)

= Secondary structure [l helix = Trans-membrane
prediction J stand span identification

. coil

membrane

. transition

solution

80% 74%
residues correct
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A NN-based Consensus Predictor that
Improves Fold Recognition

During recent years many protein fold recognition methods have 50
been developed, based on different algorithms and using various
kinds of information. To examine the performance of these methods
several evaluation experiments have been conducted. These include
blind tests in CASP/CAFASP, large scale benchmarks, and long-term,
continuous assessment with newly solved protein structures. These
studies confirm the expectation that for different targets different
methods produce the best predictions, and the final prediction
accuracy could be improved if the available methods were combined
in a perfect manner. In this article a neural-network-based consensus
predictor, Pcons, is presented that attempts this task. Pcons
attempts to select the best model out of those produced by six
prediction servers, each using different methods. Pcons translates
the confidence scores reported by each server into uniformly scaled

B
o

w
o

Number correct models (Igscore2<1e-3)

values corresponding to the expected accuracy of each model. The 20 ¥’

translated scores as well as the similarity between models produced ,",1 - E;";gmde'

by different servers is used in the final selection. According to the s — — 3D-PSSM

analysis based on two unrelated sets of newly solved proteins, Pcons ’/:' ! —— Genthreader

outperforms any single server by generating ~8%—10% more correct 1 — — IN8GU

predictions. Furthermore, the specificity of Pcons is significantly 10 | /,: __ g:gf%a;t ]
higher than for any individual server. From analyzing different input ’,/’

data to Pcons it can be shown that the improvement is mainly i

attributable to measurement of the similarity between the different

models. Pcons is freely accessible for the academic community 0 ) \ ‘ | , ) L
through the protein structure-prediction metaserver at 0 5 10 15 20
http://bioinfo.pl/meta/. Number incorrect models (Igscore2>1e-3)

= Lundstroem, J.; Rychlewski, L.; Bujnicki, J.; Elofsson, A., Pcons: A neural-network —based
consensus predictor that improves fold recognition. Protein Sci. 2001, 10, 2354-2362.
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Hidden Markov Models ldentify Local
Structural Motives from Sequence

Type | B-hairpin Serine containing 3-hairpin™ e o O o o

Serine f-hairpin

g 3‘!? '$ a A g Y ] P s 0 e e -

Figure 4 (legend opposite)

1. Bystroff, C.; Baker, D., Prediction of Local Structure in Proteins Using a Library of Sequence-Structure Motifs. J. Mol. Biol. 1998, 281, 565-
577. 2. Bystroff, C.; Thorsson, V.; Baker, D., HMMSTR: a Hidden Markov Model for Local Sequence-Structure Correlations in Proteins. J. Mol.
Biol. 2000, 301, 173-190.
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ANN — Derived Contact Numbers Improve
Membrane Protein Structure Prediction

d [ Local Sequence or Evolutionary Information ]

| Input Layer ] |

| Hidden Layer

| Output Layer ] O

Contact Numbar or RSA

@[ Apply Dropout ]

[ Local Sequence or Evolutionary Information

| Input Layer | _.-_I X B X
| Hidden Layer ) x ( ' x
_Output Layer | O

| Contact Number or RSA 1

B. Li, J. Mendenhall, E. D. Nguyen, B. E. Weiner, A. W. Fischer and J. Meiler; "Accurate Prediction of Contact Numbers for Multi-
Spanning Helical Membrane Proteins"; J Chem Inf Model, 2016; Vol. 56 (2): p. 423-34.

B. Li, J. Mendenhall, E. D. Nguyen, B. E. Weiner, A. W. Fischer and J. Meiler; "Improving prediction of helix-helix packing in
membrane proteins using predicted contact numbers as restraints"; Proteins; 2017; Vol. 85 (7): p. 1212-1221.
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Convolutional Neural Networks (CNN) can
understand Different Levels of Resolution

A Tvpical Convolutional Neural Network (CNN)

Output

Convolution Pooling Convolution Pooling
T ‘ 3
| _ T
T f\xFI—E =2 — i
Kernel
Input Image Featured Pooled Featured Pooled Flatten

maps Featured maps maps Featured maps  layer
. e b
Feature Maps Fully connected layer
: I : : | ||
Feature Extraction | . Classification l, Probabilistic |
, |

distribution
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Paying Attention

/ convolutional \

\ The cat sat on the mat /
/ self-attention \

-

recurrent

\ The cat sat on the mat

~

!

-

casual attention

~
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Transformers and Attention — let the
Neural Network figure out Importance

Output
Probabilities

Softmax

Linear

Feed
Forward

\ l Add & Norm |4_-:

1
SRR Mutti-Head
Feed Attention
Forward ! ) Nx
—
Nx Add & Norm
f—“l Add & Norm | R
Multi-Head Multi-Head
Attention Attention
At _t
\ J . —
Positional ®_@ ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding

I I

Inputs Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.
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Transformers and Attention — let the
Neural Network figure out Importance

Qutput
Probabilities
Feed-forward network:

after taking information from
other tokens, take a moment to
think and process this information

((etom )
Feed ¥
Forward T
Feed-forward network: Decod g _
after taking information from - I ~ Add & Norm / ecoder-encocer attention:
other tokens. take a moment to \QM ot read 1 target token looks at the source
. ’ L : Feed Attenti .
think and process this information Forward ) ﬁe)m'on Nx queries — from decoder states; keys
T . and values from encoder states
Add & Norm
. N Add & Norm ' T
Encoder self-attention: (LA ton) MEEER .
tokens look at each other T hﬂxﬂi}:tiiiid Mﬂ:é:%a: Decoder self-attention (masked):
erion ke yaluos y 7 X ) tokens look at the previous tokens
| S— I .
qare corﬁ uxée’d from - - / gueries, keys, values are computed
P T asitions! D @ Positional from decoder states
encoder states Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)
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The Future of Artificial Neural Networks in
Biomedical Research — Some Thesis
1.

All problems that have infinite/near infinite data available for training will
be smashed (think language processing, sequence problems in
biochemistry, protein structure)

New architectures and structures of ANNs will emerge that will be
parallel in size to or larger then the human brain (10 connections) with
substructures matching in complexity

The biggest challenge for biomedical research will emerge with limited
datasets that forbid training of super-large ANNs; Expert Knowledge will
Design the Optimal ANN

For the next Decade (at least), you need to be an expert in machine
learning and structural/chemical biology to contribute to progress in a
meaningful way

We will start an honest discussion on ethics of artificial intelligence as
these systems will start to act human-like on many levels all the way to
having self-awareness
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Highly accurate protein structure
prediction with AlphaFold

a b c
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J. Jumper, et al,;
"Highly accurate
protein structure
prediction with
AlphaFold";
Nature; 2021;
Vol. 596 (7873):
p. 583-589.
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Highly accurate protein structure
prediction with AlphaFold — Evoformer
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Highly accurate protein structure

prediction with AlphaFold — Structure
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J. Jumper, et al,;
"Highly accurate
protein structure
prediction with
AlphaFold";
Nature; 2021;
Vol. 596 (7873):
p. 583-589.
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Sampling Alternative Conformational
States with AlphaFold2

A

1.00 _ -~ -~ MSAdepth
' (sequences)

0.95

0.90

0.85

Similarity to outward-facing structure (TM-score)

0.85 0.90 0.95 1.00
Similarity to inward-facing structure (TM-score) LAT1, inward-facing (PDB: 6IRSb) LAT1, outward-facing (PDB: 7DSQb)

Figure 1. Alternative conformations of transporters and GPCRs can be predicted by
AF2. (A) Representative models of the transporter LAT1 in IF and OF conformations.
Experimental structures shown in gray and models shown in teal and orange.

D. Del Alamo, D. Sala, H. S. McHaourab and J. Meiler; "Sampling alternative conformational states of transporters and receptors
with AlphaFold2"; Elife; 2022; Vol. 11 p.

-
{ AR

SR

\i = 2]
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Molecular Architecture of the Human
Caveolin-1 Complex with AlphaFold2

Experimental
11-mer 10-mer 11-mer 12-mer 11-mer -,AFZ
(Cryo-EM) (AlphaFold2.2) (AlphaFold2.2) (AlphaFold2.2) ) mer J. C. Porta, B.
R = Han, A
/ A Pl .
43 > A Gulsevin, J.
g\ 3 Chung, Y.
Peskova, S.
Connolly, H. S.

AF2
11-mer

Mo

Meiler, E.

M. D. Ohi;
"Molecular

the human
caveolin-1
complex";
AF2 AF2 AF2 .
13mer 14emer 15-mer Science

f “g\i, f : /2:%\ ff \%ﬁh Advances;

2022; Vol. p.

Mchaourab, J.

Karakas, A. K.
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www.meilerlab.org — recruiting graduate students and postdoctoral fellows — jens@meilerlab.org

66



Molecular Architecture of the Human
Caveolin-1 Complex with AlphaFold2

Model-1 Model-2 Model-3 Model-4 Model-5
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, Han, A.
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Peskova, S.
Connolly, H. S.
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6-mer Meiler, E.
Karakas, A. K.
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M. D. Ohi;

p— "Molecular
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Antibody Diversity is Limited to 107"
Germline Antibodies

Locus V Ganes D Genas J Genes

IGH 38-46 23 6 ‘P' nucleotides generated by RAG
IGK 34-38 0 5
IGL

29.33 0 4-5 D

v 0 JIII™ L

L

JHIIOI ™ (TITITIIT
il iy
\/

Wy | T

V(D)J Recombination Junctional Diversity

E Heavy Chain

ﬂ Light Chain

Heavy/Light Chain Pairing

V-Gene | | non-templated (N) Nucleotides | | D-Gene || N-Nucleotides | | J-Gene

Finn et al. Curr Opin. Immunol 2013
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Complementarity Determining Regions
(CDRs) recognize Antigens
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MSD of flexible proteins predicts sequences
optimal for conformational change

Sauer, M. F,, Sevy, A. M., Crowe, J. E.,

A B PDB search Jr., & Meiler, J. (2020). Multi-state

Each benchmark case consists of multiple conformations of ; ; ; ;
same seguence and > 5A maximum pairwise RMSD design of flexible proteins predicts

sequences optimal for
conformational change. PLoS Comput

1 .
Biol, 16(2), e1007339.
Rosetta FastRelax https://doi.org/10.1371/journal.pcbi.
s Use -relax:constrain_relax_to_start_coords option 1007339
2 to restrict backbone movement away from the native structure,
or template
L‘g S' d—a
: —
E: P— e A Y Maintained Reassorted
w — ~ RECON . . Contacts ___Contacts
® — : : Single State Design < 7 LA | 4 '
£ — Multi-State Design 9 9 c ’ -'
Select mean lowest-energy Select lowest-energy sequence b=
sequence for all states for an individual state £
o
| Erecon = 311 Ea(On, aa,) Essp = Ea(0y, aay) "g
Distance Metric S
I )

PSI-BLAST Sequence Profile

Compare design sequence profiles to evolutionary sequence
profiles

Fig 1. Graphical representation ﬂfhﬂ_jﬂljlmi!‘i and experimental dﬂ'iign. ( A) Schematic of SEqUEnce §pace and the impact of ﬂt'xibilit}' O §eqUEnce tolerance. S,
and 5; represent two unigque conformations of the same residue length separated by some RMSD that populate two local energy minima. Black lines with end caps
represent unique sequences that are energetically most favorable for a single conformation. The dark shaded area encirclessequences that are enerpgetically : - '
favorable for both conformations. Here we illustrate that by using multiple conformations during protein design, we identify sequences that are energetically Local side chain environment
suitable for conformational flexibility, yet are not necessarily the most stable sequence for any given conformation. Additionally, the requirement to adopt multiple changes based on g|o bal
conformations constrains the number of suitable sequences (B) Flow chart of benchmark drﬁig_u.

Conformation B

conformational rearrangements
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Simulating Antibody Affinity Maturation in

the Computer

= Rapid Multi-State Design
Algorithm for Rosetta

Table 6. Comparison of design-generated sequences to evolutionary sequence profiles of input proteins.

Evolutionary sequence similarity (%)*

Benchmarkcase RECON FBB RECON BBM MPI_MSD
CheY 56.3 705 57.5
Elastase 60.3 70.7 65.9
FYN 87.0 87.0 96.0
PAPD 61.7 65.3 52.4
Ran 76.6 79.3 825
Vy1-69 90.6 91.7 32.0
Vu3-23 50.7 50.7 36.4
Vy5-51 69.0 67.0 30.4
Average 69.0 72.8 56.6

Designs produced by MPI_MSD or fixed backbone (FBB) or backbone minimized (BBM) RECON algorithms were compared to sequence profiles of
evolutionarily related proteins at designed positions.
#Sequence similarity is computed as the Sandelin-Wasserman similarity, normalized as a percentage. See methods for details.

4 Encouraged
H Ap— \ convergence
W N
% S/ " ABY Y --- Forced
/ -
P NS convergence
.
g

Energy

Sequence space

A. M. Sevy, T. M. Jacobs, J. E. Crowe, Jr. and J. Meiler; "Design of
Protein Multi-specificity Using an Independent Sequence Search
Reduces the Barrier to Low Energy Sequences"; PLoS Comput Biol,
2015; Vol. 11 (7): p. e1004300.
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J. R. Willis, B. S. Briney, S. L. Deluca, J. E. Crowe, Jr. and J. Meiler;
"Human germline antibody gene segments encode polyspecific
antibodies"; PLoS Comput Biol; 2013; Vol. 9 (4): p. e1003045.
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Redesign of PG9 Enhances Binding
Potency and Breadth of Neutralization

= 30 Amino Acid HCDR3 = N109Y Mutant is Predicted to Stabilize
but few somatic mutations HCDR3 in Active Conformation
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| f
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J. R. Willis, G. Sapparapu, S. Murrell, J. P. Julien, V. Singh, H. G. King, Y. Xia, J. A. Pickens, C. C. LaBranche, J. C. Slaughter, D. C. Montefiori, I. A.
Wilson, J. Meiler and J. E. Crowe, Jr.; "Redesigned HIV antibodies exhibit enhanced neutralizing potency and breadth"; J Clin Invest; 2015; Vol.
125 (6): p. 2523-31.
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Position Specific Scoring Matrix for
Screening of Candidate Antibodies

= Do HIV-Naive Humans have
PG9-like Antibodies?
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Nargi, R., Scarlett-Jones, M., Reichard, W., Bombardi, R., Voss, T. G., Meiler, J., &

Crowe, J. E., Jr. (2020). Identification of Structurally Related Antibodies in Antibody Sequence Databases Using Rosetta-Derived Position-
Specific Scoring. Structure, 28(10), 1124-1130 e1125. https://doi.org/10.1016/j.str.2020.07.012
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In silico Affinity Maturation of Candidate
Antibody HCDR3s

» Rosetta Design
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J. R. Willis, ..., J. Meiler and J. E. Crowe, Jr.; "Long antibody HCDR3s from HIV-naive donors presented on a PG9 neutralizing antibody
background mediate HIV neutralization"; Proc Natl Acad Sci U S A; 2016; Vol. 113 (16): p. 4446-51.

Sl www.meilerlab.org — recruiting graduate students and postdoctoral fellows — jens@meilerlab.org 75






CDRH3-based cyclic peptides targeting
influenza

A. Influenza antibody B. Folding simulations with RosetTa
with long CDRH3 loop
CO05 truncated WT
CDRH3 P e, s
5. ~e 2
Wild-type
(WT) _ 54
=)
C/c 2 -25 -15
£ Sequence optimized for stability
A C05 d1 C05 truncated d4
RedeSign BeoePucresParosssncscentrosssnnnne
Remove CDRH3 loop 54—
Add disulfide bond c 0 2 4 6 8 10
Cc

Ca RMSD (A)

Alexander M Sevy, luliia M. Gilchuk, Rachel Nargi, Mattie Jensen, Jens Meiler, James E. Crowe; “Computationally designed cyclic
peptides derived from an antibody loop increase breadth of binding for influenza variants; submitted
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C05-based cyclic peptides have increased
breadth of HA recognition

Group Subtype Strain C05 d1 C05 d4 C05 1gG
1 H1N1 A/Solomon Islands/03/2006 +++ +++ ++++
A/Solomon Islands/03/2006 head domain ++ ++ +++
A/Brevig Mission/1/1918 - -
AlTottori/YK012/2011
A/mallard/Alberta/35/1976 - - ++
A/Puerto Rico/8/1934 +++ +++
A/Texas/36/1991 - -
A/New Caledonia/20/1999 +++ +++ ++
A/California/04/2009 - +4++ -
H2N2 A/Japan/305/1957 +++ ++ +4+++
A/Singapore/1/1957 +++ +++ +4+4+
H5N1 A/Vietnam/1203/2005 - -
Al/Indonesia/5/2005 - -
HIN2 Alturkey/Wisconsin/1/1966 ++++ +4++ ++
H16N3 A/black-headed gull/Sweden/4/1999 - - -
2 H3N2 A/Hong Kong/1/68 +++ +++ +4+++
A/Brisbane/10/2007 +++ +++ +4+++
A/Perth/16/2009 +++ - +4+++
A/Panama/2007/1999 - - ++++
A/Bangkok/1/1979 - -
H4NG6 A/duck/Czechoslovakia/1956 +++ +++
H7N9 A/Shanghai/02/2013 +++ +++
A/Netherlands/219/2003 - -
H15N8 A/shearwater/Western Australia/2576/1979
Legend
++++ <10 nM Gray: No change in breadth compared to 1gG
+++ 10-100 nM Green: Gain of breadth compared to IgG
++ 100-1,000 nM Orange: Loss of breadth compared to IgG
+ >1,000 nM
- Binding not detected
NT Not tested
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Proof of principle for epitope-focused
vaccine design: respiratory syncytial virus

Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes.
Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neu-
tralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-
specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus,
that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accu-
rately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising
leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young
children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold -based
vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine
targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.
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‘Re-elicitation’ of neutralizing antibodies

B. E. Correia, J. T. Bates, R. J. Loomis, G. Baneyx, C. Carrico, J. G. Jardine, P. Rupert, C. Correnti, O. Kalyuzhniy, V. Vittal, M. J. Connell,
E. Stevens, A. Schroeter, M. Chen, S. Macpherson, A. M. Serra, Y. Adachi, M. A. Holmes, Y. Li, R. E. Klevit, B. S. Graham, R. T. Wyatt, D.
Baker, R. K. Strong, J. E. Crowe, Jr., P. R. Johnson and W. R. Schief; "Proof of principle for epitope-focused vaccine design"; Nature; 2014;
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Epitope-focused vaccine design to elicit
HR2/MPER antibodies

BDBV-MPER template
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Epitope-focused vaccine design to elicit

HR2/MPER antibodies

BDBV-MPER template
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Epitope-focused vaccine design to elicit
HR2/MPER antibodies

BDBV-MPER template
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"H-"N HSQC spectrum showing the
assignment for the MPER immunogen
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Presentation on Self-Assembling Particle
Platform
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Dynamic light scattering ELISA binding
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Rosetta Antibody Design biased to only
create Human-Like Antibodies
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Structural design of human-like antibodies

Schmitz, S., Schmitz, E. A., Crowe, J. E., Jr., & Meiler, J. (2022). The human antibody sequence space and structural design of the V, J regions
and CDRH3 with Rosetta. MAbs, 14(1), 2068212. https.//doi.org/10.1080/19420862.2022.2068212
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Robust deep learning-based protein
sequence design using ProteinMPNN
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J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet, R. J. de Haas, N. Bethel, P.
J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan, B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King and
D. Baker; "Robust deep learning-based protein sequence design using ProteinMPNN"; Science; 2022; Vol. 378 (6615): p. 49-56.
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De novo Protein Design by Deep Network

Hallucination
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I. Anishchenko, S. J. Pellock, T. M. Chidyausiku, T. A. Ramelot, S.
Ovchinnikov, J. Hao, K. Bafna, C. Norn, A. Kang, A. K. Bera, F.
DiMaio, L. Carter, C. M. Chow, G. T. Montelione and D. Baker;
"De novo protein design by deep network hallucination"; Nature;
2021; Vol. 600 (7889): p. 547-552.
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Anchor extension: a structure-guided
approach to design cyclic peptides
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P. Hosseinzadeh, P. R. Watson, T. W.

Craven, X. Li, S. Rettie, F. Pardo-Avila,
A. K. Bera, V. K. Mulligan, P. Lu, A. S.
Ford, B. D. Weitzner, L. J. Stewart, A.
P. Moyer, M. Di Piazza, J. G. Whalen,

P. J. Greisen, D. W. Christianson and

D. Baker; "Anchor extension: a

structure-guided approach to design

cyclic peptides targeting enzyme active
sites"; Nat Commun; 2021; Vol. 12 (1):

p. 3384.
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Design of protein-binding proteins from the
target structure alone
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Fig.1|Overview ofthede p Inbinder desi Ipeline.a,Schematic  another round of docking and design (steps 6 and 7). Designs are then selected

of our two-stage binder design approach. In theglobal search stage, billions of
disembodied amino acids are docked onto the selected region of the target
protein surface using RifGen, the favourable interacting amino acids are stored
asrifres (step 1), and miniprotein scaffolds are then docked on the target
guided by these favourable side-chaininteractions (step 2). The interface
sequences are then designed to maximize interactions with the target (step 3).
Inthe focused search stage, interface structural motifs are extracted and
clustered (steps 4 and 5). These privileged motifs are then used to guide

forexperimental characterization based on computational metrics (step 8).
SeeExtended Data Fig. 1 foramore detailed flow chart of the denovo binder
design pipeline. b, Comparison of the sampling efficiency of PatchDock,
RifDock and resampling protocols. Bar graph shows the distribution over the
three approaches of the top 1% of binders based on RosettaddGand contact
molecular surface values after pooling equal-CPU-time dock-and-design
trajectories for each of the 13 target sites and averaging per-target
distributions (Methods).

Cao, L. X., Coventry, B., Goreshnik, 1.,
Huang, B. W., Sheffler, W., Park, J. S., Jude,
K. M., Markovic, |., Kadam, R. U.,
Verschueren, K. H. G., Verstraete, K., Walsh,
S. T. R,, Bennett, N, Phal, A., Yang, A.,
Kozodoy, L., DeWitt, M., Picton, L., Miller, L., .
. . Baker, D. (2022). Design of protein-binding
proteins from the target structure alone.
Nature, 605(7910), 551-+.
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Design of peptide-drug conjugate ligands
of the kappa-opioid receptor

L - Muratspahic, E., Deibler, K., Han,
AT - 4 - J., Tomasevic, N., Jadhav, K. B.,
Y Olive-Marti, A. L., Hochrainer, N.,
'é_’lf-”’ Hellinger, R., Koehbach, J., Fay, J.
e F., Rahman, M. H., Hegazy, L.,
L Craven, T. W., Varga, B. R,
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Fig. 1| Strategy for the computational design of thioether macrocyclized cyclopropylmethyl-epoxy morphinan small molecule stub). (3) Generation of a
peptide-small molecule conjugates targeting KOR. a 3D human KOR structure comprehensive library of 5- and 6-mer thioether cyclized peptides clustered via
withsmall molecule agonist MP1104 was used as the starting template (PDE: 6673).  torsion angle and hydrogen bond pamemn. (4) Docked structre of thicether mac-
b Workflows for computational peptide—small molecule conjugate design: (1) rocyclized hexamers through coordinate-guided transformation of the backbone
Measurement of the pocket area (% A3) narrowed down the size of macrocyeles  C-termini to the generated anchor N-termini. (5) Rotamer design to optimize the
to focuson 5-and 6-mer cyclic peptides. (2) Generation of small moleculeswithtwo  interface interacdons of the backbones. (6) Design filtering based on shape com-
additional amino acids, which were sampled and scored for optimal dimer plementarity and interface area as representative examples for interface merics;
sequence (select dipeptide modified small molecules: Gray: cvv-p-Fhe-Thr: Yel-  dashed red line represents 20th percentile cut-off values.

low: cvv-0-Phe-51n; Orange: Cvv-D-rhe -Ser; CVV corresponds m N-
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How Stable Diffusion works in a Nutshell
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RFDiffusion for (Cyclic) Peptides
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RFDiffusion for (Cyclic) Peptides

plDDT score

O BRD4-BD1 (PDB: 6U6K) ¢

[] Cyclic peptide 3.1_3
[[] Hotspots

I G T
2 ./ RFDiffusion

Hotspots

(cyclic offset)

T T T
5 10 15 20 25

[ ]nput target
D Output target
D Original ligand

Design 1

SWAKYYDPSYSS

Design 2

PWAKLYDPSYKS

Design 3 | PWAKLFNPEYKS

E 30 4
length E :: 10
1 0.94 - ~ e 9 : g
10 ' v
i n P80
 0.93 s 12 L3
S ] & -10
. N’ T
go,gz- PR R -
= iR :
0.91+ .'-.e'..:! i ¢ : —30
5o g ".’_' il E (Prear : 0.853
0.90 8 e L LR : T T T T T T T
Y BI[J 3)?5 4‘;30 4.I25 4.|5C| 4.I?5 5,IUU : 0 3 10 1.5 20 s 30
pAE interaction [A] pAE interaction [A] ! RMSD to design model [A]
www.meilerlab.org — recruiting graduate students and postdoctoral fellows — jens@meilerlab.org 94




Generalized biomolecular modeling and

design with RoseT TAFold All-Atom
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