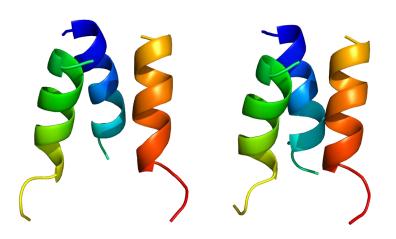
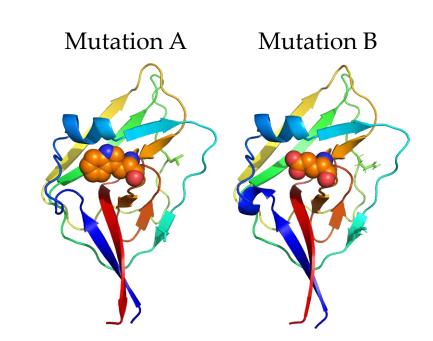
Rosetta Scoring Function

Tracy (Yidan) Tang Rosetta Workshop Meiler Lab



Why we need a scoring function?

Example 1:


Same amino acid sequence, different conformations. Which one is the more stable?

Conformation A Conformation B

Example 2:

Different single point mutations (or multiple mutations). Which residue is the best one?

A scoring function is able to distinguish and rank different models.

How discriminate among A and B?

Scoring Function (or Energy Function)

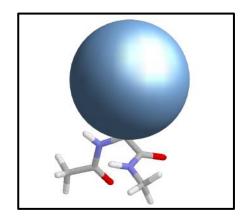
$$\Delta E_{\text{total}} = \sum_{i} w_i E_i(\Theta_i, aa_i)$$

The total energy (ΔE_{total}) is the sum of weighted energy terms ($\Sigma_i \mathbf{w}_i E_i$) that are calculated as functions of geometric degrees of freedom (Θ_i) and chemical identities (\mathbf{aa}_i).

Scoring Functions in Rosetta:

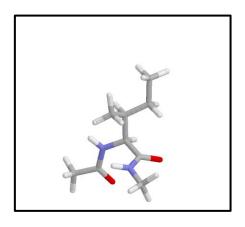
	Score12	Talaris13	Talaris14	REF2015
2004	2	.013	201	.7

Historically the total energy was given in Rosetta Energy Units, REU


The newest scoring function (REF2015) can be converted to **kcal/mol**

Rosetta updates its scoring functions to improve the accuracy of the scoring.

Types of Scoring Functions:


Low Resolution

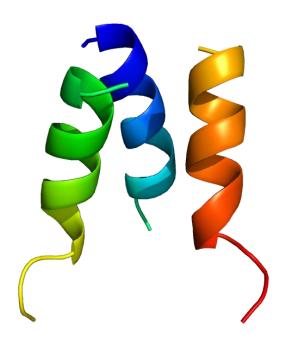
Centroid-mode or Coarse-Grain Simple energy function Faster

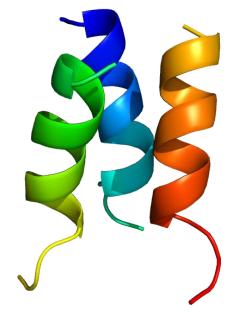
Global search of conformational space (Ab-initio folding, loop modeling)

High Resolution

Full-Atom or All-Atom More accurate energy function Time consuming

Local search of conformational space




Rosetta has multiple types of scoring function, depending on the needs.

Rosetta Scoring: The lower the better!

Conformation A

Conformation B

Total Energy = 253 REU

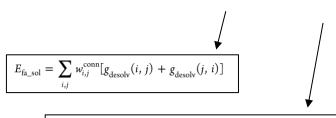
Total Energy = -82 REU

Conformation B is the more stable because it has the lower energy (-82 REU).

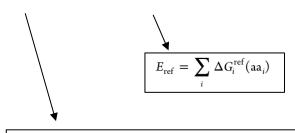
Rosetta Scoring: The lower the better!

Conformation A

Conformation B


But why the energy is different?

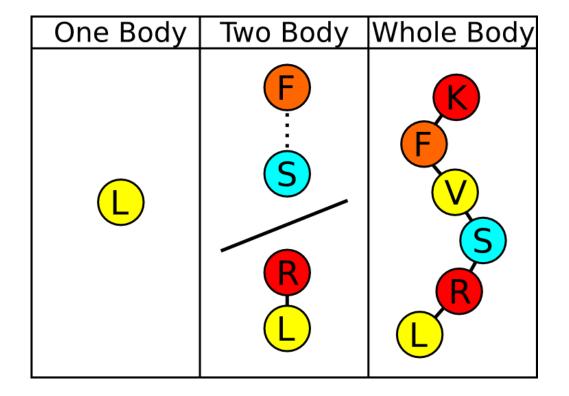
Total Energy = 253 REU Total Energy = -82 REU


Energy Terms

$$\Delta E_{\text{total}} = \mathbf{w}_1 E_1 + \mathbf{w}_2 E_2 + \mathbf{w}_3 E_3 + \mathbf{w}_4 E_4 + \dots + \mathbf{w}_n E_n$$

$$E_{\text{fa_rep}}(i, j) = \sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} m_{i,j} d_{i,j} + b_{i,j} & d_{i,j} \leq 0.6\sigma_{i,j} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} + 1 \right] & 0.6\sigma_{i,j} < d_{i,j} \leq \sigma_{i,j} \\ 0 & \sigma_{i,j} < d_{i,j} \end{cases}$$

$$E_{\text{elec}}(i, j, d_{i,j}) = \frac{C_{0} q_{i} q_{j}}{\varepsilon(d_{i,j})} \begin{cases} \frac{1}{d_{i,j}^{2}} - \frac{1}{d_{\text{max}}^{2}} & d_{i,j} \leq d_{\text{max}} \\ 0 & d_{\text{max}} < d_{i,j} \end{cases}$$



$$E_{\text{elec}}(i, j, d_{i,j}) = \frac{C_0 q_i q_j}{\epsilon(d_{i,j})} \begin{cases} \frac{1}{d_{i,j}^2} - \frac{1}{d_{\text{max}}^2} & d_{i,j} \le d_{\text{max}} \\ 0 & d_{\text{max}} < d_{i,j} \end{cases}$$

$$E_{\text{fa_atr}} = \sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} -\varepsilon_{i,j} & d_{i,j} \leq \sigma_{ij} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} \right] & \sigma_{i,j} < d_{i,j} \leq 4.5 \text{ Å} \\ f_{\text{poly}}(d_{i,j}) & 4.5 \text{ Å} < d_{i,j} \leq 6.0 \text{ Å} \\ 0 & 6.0 \text{ Å} < d_{i,j} \end{cases}$$

Energy Terms

Energy Terms

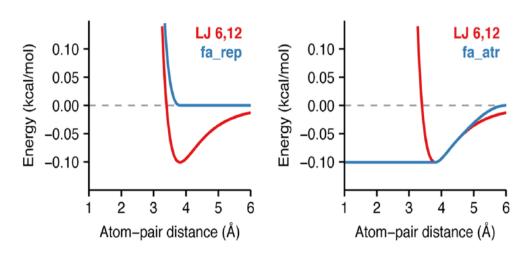
One Body	Two Body	Whole Body
Backbone - p_aa_pp - rama_prepro	Lennard-Jones - fa_atr - fa_rep	Radius of Gyration - rg
Side Chain - fa_dun - yhh planarity	Solvation - fa_sol	Contact Order - co
Reference - ref	Hydrogen Bond - hbond_lr_bb - hbond_sr_bb - hbond_bb_sc - hbond_sc	Structure Alignment - hs_pair - ss_pair - sheet

Energy Terms: Full-Atom

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

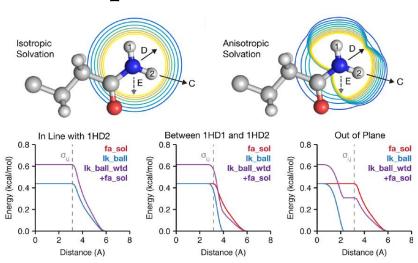
^aAU = arbitrary units.

Energy Terms: Full-Atom


term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaus ian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orien ation-dependent so ration of polar atoms assuming ideal vate geometry	1.	kcal/mol	50, 71
fa_intra_sol	Gaus ian exclusion implier s lva or e grey let eet corein att is a the large te di	1.	kcal/mol	36
fa_elec	energy of interaction between two horizondes changes alons separated of a listance	2.0-	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen Sonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbour dependence program for cit width dreis hat department of the dreis that level te from 80.		AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energ	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

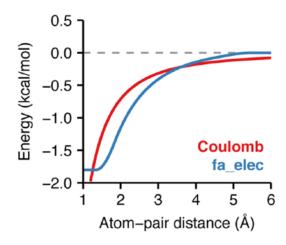
^aAU = arbitrary units.

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

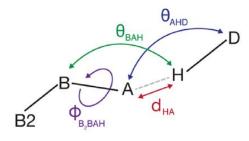

Van der Waals Interactions

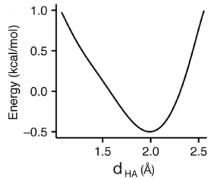
term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

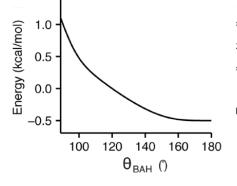
Implicit Solvation

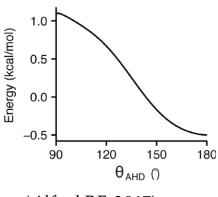


term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf fa13	energy of disulfide bridges	1.25	kcal/mol	49

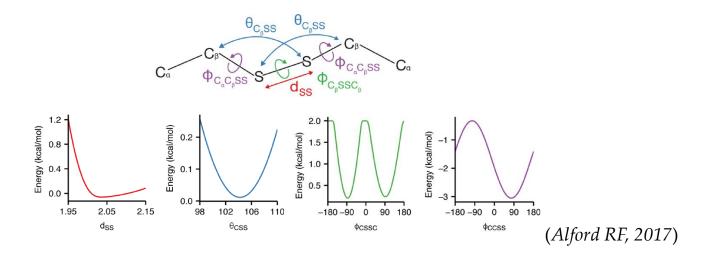

Electrostatics




term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49


Hydrogen Bonds

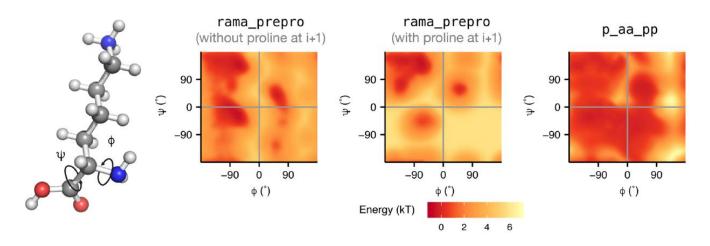
A = Acceptor H = Hydrogen D = Donor B = Base B2 = Parent



term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk ball wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond bb sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

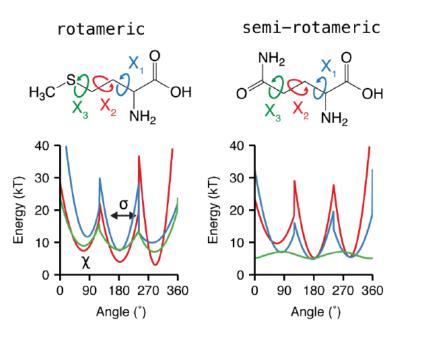
Disulfide Bond

Energy Terms: Full-Atom

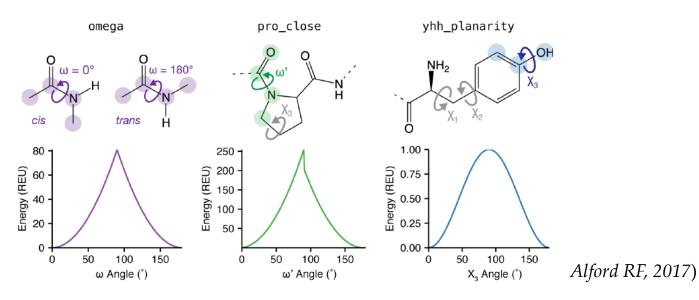

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaus ian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orien ation-dependent so ration of polar atoms assuming ideal vite geometry	1.	kcal/mol	50, 71
fa_intra_sol	Gaus ian exclusion impliest's live or energy lety een corein ato us a the last energic	1.	kcal/mol	36
fa_elec	energy of interaction between two nonsorided charges alons separated y a distance		kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbourdepends, perally for cit will dress hat declare in a condition is that nevertee from 8000000000000000000000000000000000000	S ^{o.} e ^{1/co.} /Au	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energ	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

aAU = arbitrary units.

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51


Protein Backbone

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p aa pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51


Protein Side-Chains

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ , ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

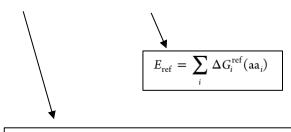
Special-Case Torsions

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ , ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Special-Case, Design

Takes in account the unfolding energy of the amino acids

Adjusts amino acids frequencies during protein design


Weights:

$$\Delta E_{\text{total}} = \mathbf{w}_1 E_1 + \mathbf{w}_2 E_2 + \mathbf{w}_3 E_3 + \mathbf{w}_4 E_4 + \dots + \mathbf{w}_n E_n$$

$$E_{\text{fa_sol}} = \sum_{i,j} w_{i,j}^{\text{conn}} [g_{\text{desolv}}(i,j) + g_{\text{desolv}}(j,i)]$$

$$E_{\text{fa_rep}}(i, j) = \sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} m_{i,j} d_{i,j} + b_{i,j} & d_{i,j} \leq 0.6\sigma_{i,j} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} + 1 \right] & 0.6\sigma_{i,j} < d_{i,j} \leq \sigma_{i,j} \\ 0 & \sigma_{i,j} < d_{i,j} \end{cases}$$

$$E_{\text{elec}}(i, j, d_{i,j}) = \frac{C_{0}q_{i}q_{j}}{\varepsilon(d_{i,j})} \begin{cases} \frac{1}{d_{i,j}^{2}} - \frac{1}{d_{\text{max}}^{2}} & d_{i,j} \leq d_{\text{max}} \\ 0 & d_{\text{max}} < d_{i,j} \end{cases}$$

$$E_{\text{elec}}(i, j, d_{i,j}) = \frac{C_0 q_i q_j}{\epsilon(d_{i,j})} \begin{cases} \frac{1}{d_{i,j}^2} - \frac{1}{d_{\text{max}}^2} & d_{i,j} \le d_{\text{max}} \\ 0 & d_{\text{max}} < d_{i,j} \end{cases}$$

$$E_{\text{fa_atr}} = \sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} -\varepsilon_{i,j} & d_{i,j} \leq \sigma_{ij} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} \right] & \sigma_{i,j} < d_{i,j} \leq 4.5 \text{ Å} \\ f_{\text{poly}}(d_{i,j}) & 4.5 \text{ Å} < d_{i,j} \leq 6.0 \text{ Å} \\ 0 & 6.0 \text{ Å} < d_{i,j} \end{cases}$$

Weights:

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

^aAU = arbitrary units.

(Alford RF, 2017)

Some weights for specific energy terms are set to zero!

Weights:

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

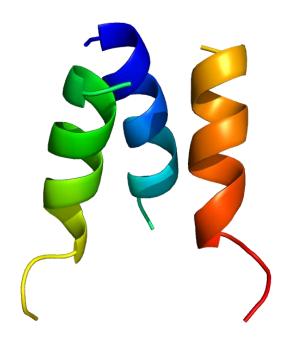
^aAU = arbitrary units.

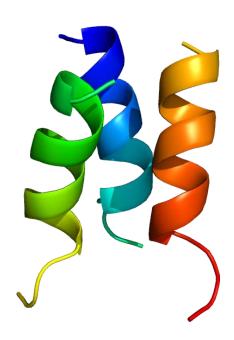
(Alford RF, 2017)

You can modify the weights, if needes in special applications!

Modifying Weights:

Using the command line:


Using xml script file:



Total Energy:

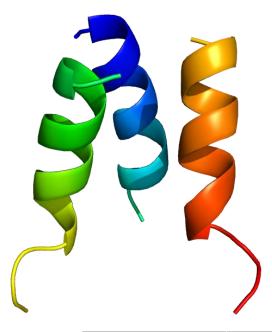
Conformation A (253 REU)

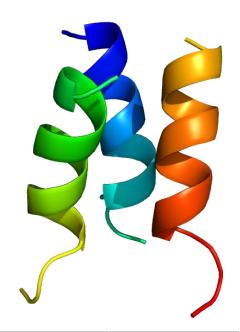
Conformation B (-82 REU)

Score File (score.sc):

```
SCORE: score fa atr fa rep fa sol fa intra rep
                                     fa elec pro close
fa intra sol xover4 lk ball wtd
                                                           hbond sr bb
hbond lr bb hbond bb sc
                             hbond sc
                                            omega
                                                    fa dun
                                                           p aa pp
yhh planarity ref rama prepro
                                     description
      253.063 -181.52
                             45.561
SCORE:
                                     149.367 0.702
17.998
                                     -1.488 5.473
                      -7.402
                                                           -12.482
                                                    236.014 2.073
                             0
                                            7.578
0
               -5.466
                      -3.345
                                     Conformation A
       -82.141 -217.874
                             26.366
                                     130.127 0.591
SCORE:
9.342
                      -10.943
                                     -36.763 1.125
                                                           -20.668
                                                           -2.846
              -3.441
                                            0.491
0
                             0
                                                    54.899
0
               -5.466 -7.08
                                     Conformation B
```


Score File (score.sc):

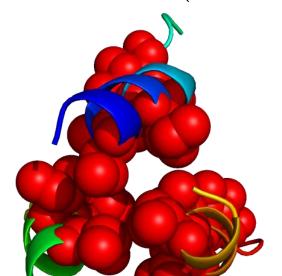

```
SCORE: score fa atr fa rep fa sol fa intra rep
fa intra sol xover4 lk ball wtd
                                   fa elec pro close hbond sr bb
hbond lr bb hbond bb sc
                           hbond sc
                                          omega fa dun p aa pp
yhh planarity ref rama prepro
                                   description
SCORE: 253.063 -181.52
                            45.561
                                   149.367 0.702
17.998
                                                        -12.482
                     -7.402
                                   -1.488 5.473
                                          7.578
                                                 236.014 2.073
0
              -5.466 -3.345
                                   Conformation A
      -82.141 -217.874
                                   130.127 0.591
SCORE:
                            26.366
9.342
                     -10.943
                                   -36.763 1.125
                                                        -20.668
0
              -3.441
                                          0.491
                                                        -2.846
                                                 54.899
                                   Conformation B
              -5.466 -7.08
```



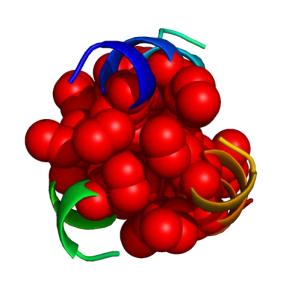
Total Energy:

Conformation A (253 REU)

Conformation B (-82 REU)

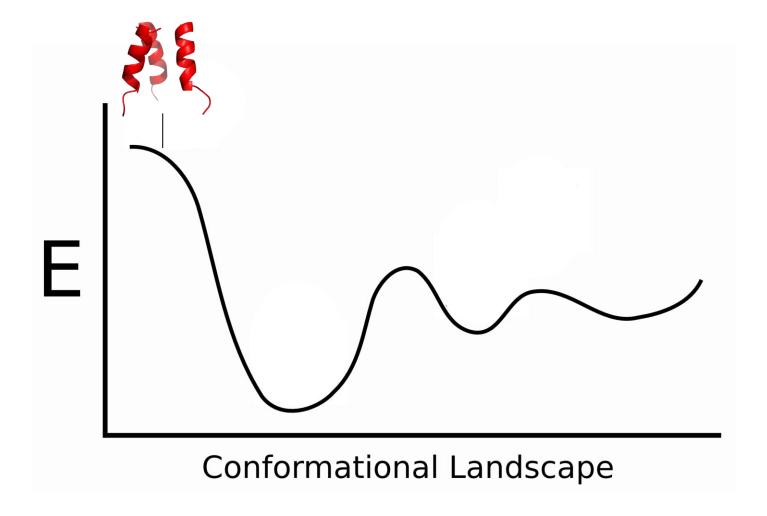


	score	fa_atr	fa_rep
A	253.1	-181.5	45.6
В	-82.1	-217.9	26.4

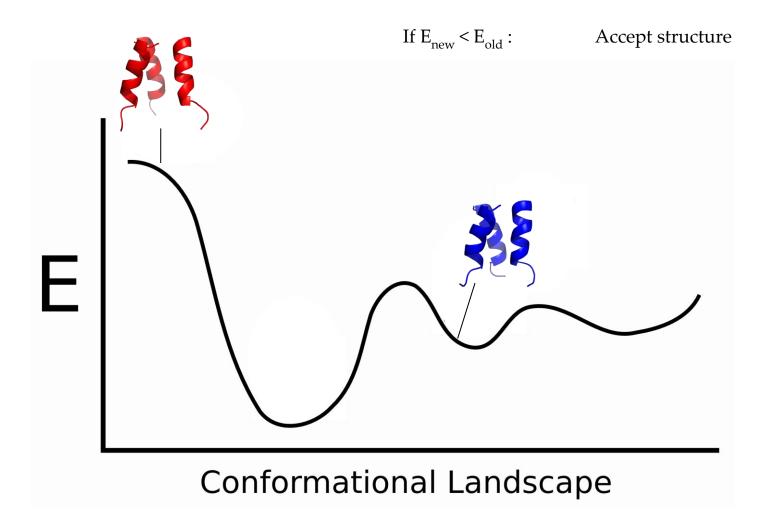


Total Energy:

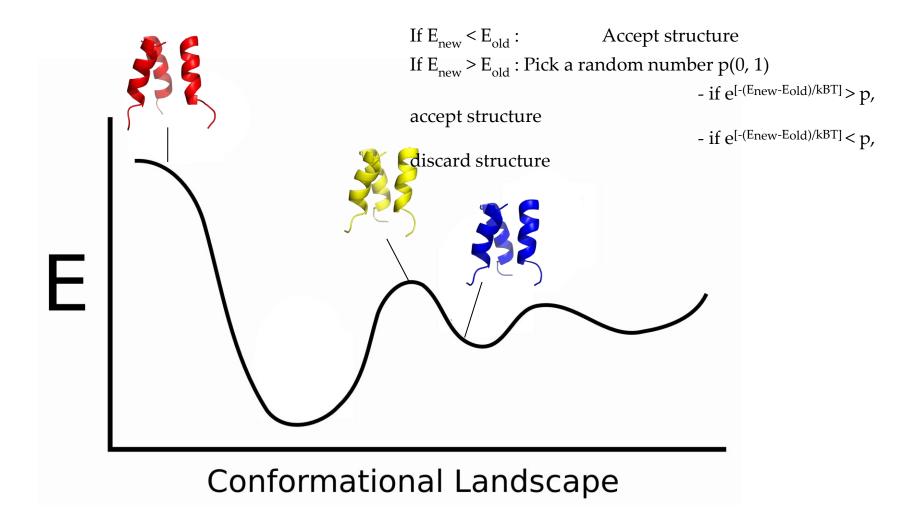
Conformation A (253 REU)


Conformation B (-82 REU)

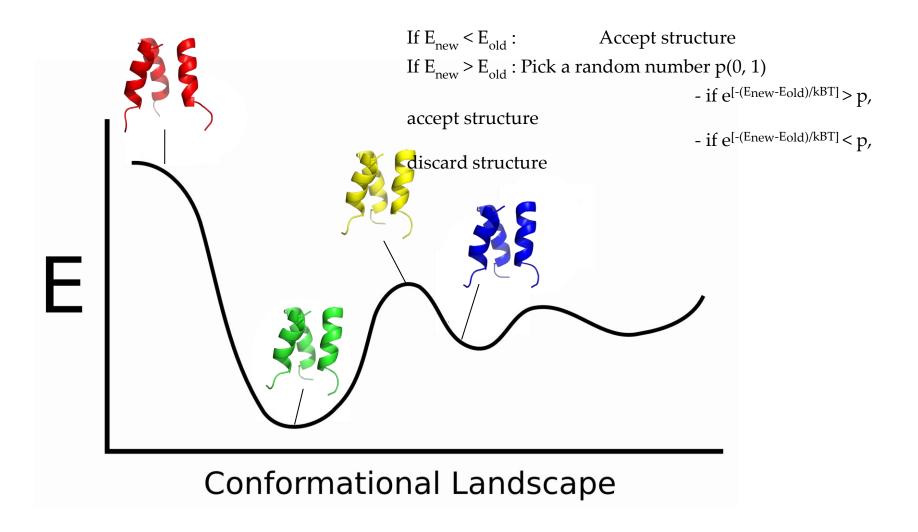
	score	fa_atr	fa_rep
A	253.1	-181.5	45.6
В	-82.1	-217.9	26.4



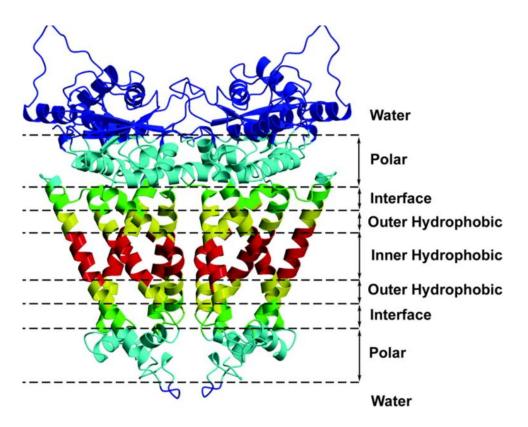
Monte-Carlo Sampling in Rosetta:



Sampling in Rosetta:



Sampling in Rosetta:


Sampling in Rosetta:

Rosetta overcomes energy barriers to find global minimum.

Other functions: Membrane Proteins

Score functions for membrane proteins:

- mpframework_smooth_fa_2012
- ref2015_memb
- franklin2019

Other terms: Biomolecules

biomolecule	term	description	unit	ref
noncanonical	mm_lj_intra_rep	repulsive van der Waals energy between two atoms from the same residue	kcal/mol	67
amino acids	mm_lj_intra_atr	attractive van der Waals energy between two atoms from the same residue	kcal/mol	67
	mm_twist	molecular mechanics derived torsion term for all proper torsions	kcal/mol	67
	unfolded	energy of the unfolded state based on explicit unfolded state model	AUa	67
	split_unfolded_1b	one-body component of the two-component reference energy, lowest energy of a side chain in a dipeptide model system	AU	in the S
	split_unfolded_2b	two-body component of the two-component reference energy, median two-body interaction energy based on atom-type composition	AU	in the S
carbohydrates	sugar_bb	energy for glycosidic torsions	kcal/mol	70
DNA	gb_elec	generalized Born model of the electrostatics energy	kcal/mol	107
RNA	fa_stack	π – π stacking energy for RNA bases	kT	113
	stack_elec	electrostatic energy for stacked RNA bases	kT	114
	fa_elec_rna_phos	electrostatic energy (fa_elec) between RNA phosphate atoms	kT	62
	rna_torsion	knowledge-based torsional potential for RNA	kT	62
	rna_sugar_close	penalty for opening an RNA sugar	kT	62
a				

^aAU = arbitrary units.

Other terms: Experimental Data

- Electron density
- Residual dipolar coupling (RDC)
- Small angle X-ray scattering (SAXS)

Other terms: Constraints

(Usually obtained from experimental data)

Atom Pair Restrains a distance between Atom1 and Atom2

Dihedral Restrains a dihedral angle

Angle Restrains an angle

Coordinate Restrains an atom to a fix XYZ position

Site Restrains a residue to interact with another chain

. . .

Bibliography - Score Functions:

REF2015:

- Alford RF, et. al, **The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design**. *Journal of Chemical Theory and Computation*, **2017**. *13* (6), 3031-3048
- Park H, et. al Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules Journal of Chemical Theory and Computation, 2016. 12 (12), 6201-6212

Old Scorefxn (Talaris):

- O'Meara MJ, et. al, A Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. Journal of Chemical Theory and Computation, 2015.
- Leaver-Fay A, et. al Scientific benchmarks for guiding macromolecular energy function improvement. *Methods in enzymology*, **2013**. 523: p. 109.

Links:

https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/score-types https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/scoring-explained

